BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 11538555)

  • 1. The components of crop productivity: measuring and modeling plant metabolism.
    Bugbee B
    ASGSB Bull; 1995 Oct; 8(2):93-104. PubMed ID: 11538555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The limits of crop productivity: validating theoretical estimates and determining the factors that limit crop yields in optimal environments.
    Bugbee B; Monje O
    Bioscience; 1992; 42(7):494-502. PubMed ID: 11537403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat production in the controlled environments of space.
    Bugbee B; Salisbury FB
    Utah Sci; 1985; 46(4):145-51. PubMed ID: 11540895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach to crop modeling with the energy cascade.
    Volk T; Bugbee B; Wheeler RM
    Life Support Biosph Sci; 1995; 1(3-4):119-27. PubMed ID: 11538584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue light requirements for crop plants used in bioregenerative life support systems.
    Yorio NC; Wheeler RM; Goins GD; Sanwo-Lewandowski MM; Mackowiak CL; Brown CS; Sager JC; Stutte GW
    Life Support Biosph Sci; 1998; 5(2):119-28. PubMed ID: 11541667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic simulation of the laboratory-scale controlled ecological life support system.
    Finn CK; Srinivasan V
    Life Support Biosph Sci; 1995; 2(2):49-57. PubMed ID: 11538310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ethylene synthesis and sensitivity in crop plants.
    Klassen SP; Bugbee B
    HortScience; 2004 Dec; 39(7):1546-52. PubMed ID: 15770791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving maximum plant yield in a weightless, bioregenerative system for a space craft.
    Salisbury FB
    Physiologist; 1984; 27(6 Suppl):S31-4. PubMed ID: 11539010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat.
    Reuveni J; Bugbee B
    Ann Bot; 1997 Oct; 80(4):539-46. PubMed ID: 11541793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracanopy lighting of cowpea canopies in controlled environments.
    Frantz JM; Chun C; Joly RJ; Mitchell CA
    Life Support Biosph Sci; 1998; 5(2):183-9. PubMed ID: 11541675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffuse light and wheat radiation-use efficiency in a controlled environment.
    Tubiello F; Volk T; Bugbee B
    Life Support Biosph Sci; 1997; 4(1-2):77-85. PubMed ID: 11540456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optimal control strategy for crop growth in advanced life support systems.
    Fleisher DH; Baruh H
    Life Support Biosph Sci; 2001; 8(1):43-53. PubMed ID: 11725784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments.
    Bugbee BG; Salisbury FB
    Plant Physiol; 1988; 88(3):869-78. PubMed ID: 11537442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study.
    Wheeler RM; Berry WL; Mackowiak C; Corey KA; Sager JC; Heeb MM; Knott WM
    J Plant Nutr; 1993; 16(10):1881-915. PubMed ID: 11538007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the potential productivity of food crops in controlled environments.
    Bugbee B
    Adv Space Res; 1992; 12(5):85-95. PubMed ID: 11537083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant productivity in controlled environments.
    Salisbury FB; Bugbee B
    HortScience; 1988 Apr; 23(2):293-9. PubMed ID: 11537758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems.
    Lawlor DW
    J Exp Bot; 2002 Apr; 53(370):773-87. PubMed ID: 11912221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress.
    Qaderi MM; Reid DM
    Physiol Plant; 2009 Oct; 137(2):139-47. PubMed ID: 19678898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modified CROPGRO model for simulating soybean growth in controlled environments.
    Cavazzoni J; Volk T; Stutte G
    Life Support Biosph Sci; 1997; 4(1-2):43-8. PubMed ID: 11540451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas exchange characteristics of wheat stands grown in a closed, controlled environment.
    Wheeler RM; Corey KA; Sager JC; Knott WM
    Crop Sci; 1993; 33(1):161-8. PubMed ID: 11538198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.