BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11538584)

  • 1. An approach to crop modeling with the energy cascade.
    Volk T; Bugbee B; Wheeler RM
    Life Support Biosph Sci; 1995; 1(3-4):119-27. PubMed ID: 11538584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The components of crop productivity: measuring and modeling plant metabolism.
    Bugbee B
    ASGSB Bull; 1995 Oct; 8(2):93-104. PubMed ID: 11538555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat production in the controlled environments of space.
    Bugbee B; Salisbury FB
    Utah Sci; 1985; 46(4):145-51. PubMed ID: 11540895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optimal control strategy for crop growth in advanced life support systems.
    Fleisher DH; Baruh H
    Life Support Biosph Sci; 2001; 8(1):43-53. PubMed ID: 11725784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The limits of crop productivity: validating theoretical estimates and determining the factors that limit crop yields in optimal environments.
    Bugbee B; Monje O
    Bioscience; 1992; 42(7):494-502. PubMed ID: 11537403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic simulation of the laboratory-scale controlled ecological life support system.
    Finn CK; Srinivasan V
    Life Support Biosph Sci; 1995; 2(2):49-57. PubMed ID: 11538310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems.
    Lawlor DW
    J Exp Bot; 2002 Apr; 53(370):773-87. PubMed ID: 11912221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth.
    Robert C; Bancal MO; Nicolas P; Lannou C; Ney B
    J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue light requirements for crop plants used in bioregenerative life support systems.
    Yorio NC; Wheeler RM; Goins GD; Sanwo-Lewandowski MM; Mackowiak CL; Brown CS; Sager JC; Stutte GW
    Life Support Biosph Sci; 1998; 5(2):119-28. PubMed ID: 11541667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation.
    Evers JB; Vos J; Yin X; Romero P; van der Putten PE; Struik PC
    J Exp Bot; 2010 May; 61(8):2203-16. PubMed ID: 20231326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments.
    Bugbee BG; Salisbury FB
    Plant Physiol; 1988; 88(3):869-78. PubMed ID: 11537442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat.
    Reuveni J; Bugbee B
    Ann Bot; 1997 Oct; 80(4):539-46. PubMed ID: 11541793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffuse light and wheat radiation-use efficiency in a controlled environment.
    Tubiello F; Volk T; Bugbee B
    Life Support Biosph Sci; 1997; 4(1-2):77-85. PubMed ID: 11540456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling wheat harvest index as a function of date of anthesis.
    Pitts MJ; Stutte GW
    Life Support Biosph Sci; 1999; 6(4):259-63. PubMed ID: 11543264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy.
    Yin X; Struik PC; Romero P; Harbinson J; Evers JB; VAN DER Putten PE; Vos J
    Plant Cell Environ; 2009 May; 32(5):448-64. PubMed ID: 19183300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving maximum plant yield in a weightless, bioregenerative system for a space craft.
    Salisbury FB
    Physiologist; 1984; 27(6 Suppl):S31-4. PubMed ID: 11539010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.
    Zhu XG; Ort DR; Whitmarsh J; Long SP
    J Exp Bot; 2004 May; 55(400):1167-75. PubMed ID: 15133059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elements of a dynamic systems model of canopy photosynthesis.
    Zhu XG; Song Q; Ort DR
    Curr Opin Plant Biol; 2012 Jun; 15(3):237-44. PubMed ID: 22325454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.).
    Górny AG; Garczyński S
    J Appl Genet; 2002; 43(2):145-60. PubMed ID: 12080171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An energy balance from absorbed photons to new biomass for Chlamydomonas reinhardtii and Chlamydomonas acidophila under neutral and extremely acidic growth conditions.
    Langner U; Jakob T; Stehfest K; Wilhelm C
    Plant Cell Environ; 2009 Mar; 32(3):250-8. PubMed ID: 19054351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.