These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11538612)

  • 21. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.
    Levine LH; Heyenga AG; Levine HG; Choi J; Davin LB; Krikorian AD; Lewis NG
    Phytochemistry; 2001 Jul; 57(6):835-46. PubMed ID: 11423135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.
    Han S; Fang L; Ren X; Wang W; Jiang J
    New Phytol; 2015 Jan; 205(2):695-706. PubMed ID: 25145265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L.
    Porterfield DM; Musgrave ME
    Planta; 1998 Sep; 206(1):1-6. PubMed ID: 11536884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of artificial electric fields on plants grown under microgravity conditions.
    Nechitailo G; Gordeev A
    Adv Space Res; 2001; 28(4):629-31. PubMed ID: 11803964
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport.
    Miyamoto K; Hoshino T; Yamashita M; Ueda J
    Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polar auxin transport is essential to maintain growth and development of etiolated pea and maize seedlings grown under 1 g conditions: Relevance to the international space station experiment.
    Miyamoto K; Inui A; Uheda E; Oka M; Kamada M; Yamazaki C; Shimazu T; Kasahara H; Sano H; Suzuki T; Higashibata A; Ueda J
    Life Sci Space Res (Amst); 2019 Feb; 20():1-11. PubMed ID: 30797426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graviresponse and its regulation from the aspect of molecular levels in higher plants: growth and development, and auxin polar transport in etiolated pea seedlings under microgravity.
    Miyamoto K; Hoshino T; Hitotsubashi R; Tanimoto E; Ueda J
    Biol Sci Space; 2003 Oct; 17(3):234-5. PubMed ID: 14676393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive changes of plant cell plasma membranes under altered gravity.
    Polulyakh YuYa
    J Gravit Physiol; 1998 Jul; 5(1):P167-8. PubMed ID: 11542341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Microgravity and root gravitropism].
    Perbal G; Driss-Ecole D
    Acta Bot Gall; 1993; 140(6):615-32. PubMed ID: 11541735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lithium-induced changes in gravicurvature, statocyte ultrastructure and calcium balance of pea roots.
    Belyavskaya NA
    Adv Space Res; 2001; 27(5):961-6. PubMed ID: 11596640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?
    Moore R
    Ann Bot; 1990; 65():213-6. PubMed ID: 11537660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinorotation impacts root apex respiration and the ultrostructure of mitochondria.
    Brykov V; Kordyum E
    Cell Biol Int; 2015 Apr; 39(4):475-83. PubMed ID: 25523479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Statocyte polarity and gravisensitivity in seedling roots grown in microgravity.
    Perbal G; Driss-Ecole D; Tewinkel M; Volkmann D
    Planta; 1997 Sep; 203(Suppl 1):S57-62. PubMed ID: 11540329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gravisensitivity of cress roots: investigations of threshold values under specific conditions of sensor physiology in microgravity.
    Volkmann D; Tewinkel M
    Plant Cell Environ; 1996 Oct; 19(10):1195-202. PubMed ID: 11539327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graviperception of lentil seedling roots grown in space (Spacelab D1 Mission).
    Perbal G; Driss-Ecole D; Rutin J; Salle G
    Physiol Plant; 1987; 70():119-26. PubMed ID: 11539054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gravicurvature loss, changes in ultrastructure and calcium balance of pea root statocytes treated with EGTA.
    Belyavskaya NA
    J Gravit Physiol; 2001 Jul; 8(1):P33-4. PubMed ID: 12638612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity.
    Nedukha O; Brown CS; Kordyum E; Piastuch WC
    J Gravit Physiol; 1999 Jul; 6(1):P123-4. PubMed ID: 11542987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of calcium and pH on nickel accumulation in and rhizotoxicity to pea (Pisum sativum L.) root-empirical relationships and modeling.
    Wu Y; Hendershot WH
    Environ Pollut; 2010 May; 158(5):1850-6. PubMed ID: 19931959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological effects of weightlessness and clinostatic conditions registered in cells of root meristem and cap of higher plants.
    Sytnik KM; Kordyum EL; Belyavskaya NA; Nedukha EM; Tarasenko VA
    Adv Space Res; 1983; 3(9):251-5. PubMed ID: 11542456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.
    Shimazu T; Yuda T; Miyamoto K; Yamashita M; Ueda J
    Adv Space Res; 2001; 27(5):995-1000. PubMed ID: 11596646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.