These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11538914)

  • 1. The Fluid Processing Apparatus: from flight hardware to electron micrographs.
    Hilaire E; Brown CS; Guikema JA
    J Gravit Physiol; 1995; 2(1):P165-6. PubMed ID: 11538914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical microtubules in sweet clover columella cells developed in microgravity.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1995 Oct; 36(7):1387-92. PubMed ID: 11536715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic fixation facility for plant seedlings in the TEXUS Sounding Rocket Programme.
    Tewinkel M; Burfeindt J; Rank P; Volkmann D
    Microgravity Sci Technol; 1991 Oct; 4(3):216-20. PubMed ID: 11539825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinorotation affects soybean seedling morphology.
    Hilaire E; Guikema JA; Brown CS
    J Gravit Physiol; 1995; 2(1):P149-50. PubMed ID: 11538905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of microgravity on stress ethylene and carbon dioxide production in sweet clover (Melilotus alba L.).
    Gallegos GL; Odom WR; Guikema JA
    J Gravit Physiol; 1995; 2(1):P155-6. PubMed ID: 11538909
    [No Abstract]   [Full Text] [Related]  

  • 6. The development of seedling shoots under space flight conditions.
    Merkys AJ; Mashinsky AL; Laurinavichius RS; Nechitailo GS; Yaroshius AV; Izupak EA
    Life Sci Space Res; 1975; 13():53-7. PubMed ID: 11913431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1995 Jul; 36(5):831-7. PubMed ID: 11536706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural organization of cells in soybean root tips in microgravity.
    Klymchuk DO; Brown CS; Chapman DK
    J Gravit Physiol; 1999 Jul; 6(1):P97-8. PubMed ID: 11543045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of spaceflight experiments with Arabidopsis as a model system in gravitropism studies.
    Katembe WJ; Edelmann RE; Brinckmann E; Kiss JZ
    J Plant Res; 1998 Sep; 111(1103):463-70. PubMed ID: 11541551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microgravity effects on plant growth and lignification.
    Cowles JR; Lemay R; Jahns G
    Astrophys Lett Commun; 1988; 27():223-8. PubMed ID: 11539286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clover development during spaceflight: a model system.
    Guikema JA; DeBell L; Paulsen A; Spooner BS; Wong PP
    Adv Space Res; 1994; 14(8):173-6. PubMed ID: 11537915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth protocols for etiolated soybeans germinated within BRIC-60 canisters under spaceflight conditions.
    Levine HG; Sharek JA; Johnson KM; Stryjewski EC; Prima VI; Martynenko OI; Piastuch WC
    Adv Space Res; 2000; 26(2):311-4. PubMed ID: 11543168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root-hair response to vector-free gravity: role of Ca2+ ions.
    Belyavskaya NA
    J Gravit Physiol; 1995; 2(1):P157-8. PubMed ID: 11538910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The BIMDA shuttle flight mission: a low cost microgravity payload.
    Holemans J; Cassanto JM; Moller TW; Cassanto VA; Rose A; Luttges M; Morrison D; Todd P; Stewart R; Korszun RZ; Deardorff G
    Microgravity Q; 1991; 1(4):235-47. PubMed ID: 11708362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bion 11 mission hardware.
    Golov VK; Magedov VS; Skidmore MG; Hines JW; Kozlovskaya IB; Korolkov VI
    J Gravit Physiol; 2000 Jan; 7(1):S27-35. PubMed ID: 11543453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and lignification in seedlings exposed to eight days of microgravity.
    Cowles JR; Scheld HW; Lemay R; Peterson C
    Ann Bot; 1984; 54(Suppl 3):33-48. PubMed ID: 11539752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?
    Moore R
    Ann Bot; 1990; 65():213-6. PubMed ID: 11537660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in Arabidopsis leaf ultrastructure, chlorophyll and carbohydrate content during spaceflight depend on ventilation.
    Musgrave ME; Kuang A; Brown CS; Matthews SW
    Ann Bot; 1998 Apr; 81(4):503-12. PubMed ID: 11541287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.