BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11538933)

  • 21. Stress-induced changes in circadian rhythms of body temperature and activity in rats are not caused by pacemaker changes.
    Meerlo P; van den Hoofdakker RH; Koolhaas JM; Daan S
    J Biol Rhythms; 1997 Feb; 12(1):80-92. PubMed ID: 9104692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restoration of circadian rhythmicity in circadian clock-deficient mice in constant light.
    Abraham D; Dallmann R; Steinlechner S; Albrecht U; Eichele G; Oster H
    J Biol Rhythms; 2006 Jun; 21(3):169-76. PubMed ID: 16731656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The chronobiology of the Natal mole-rat, Cryptomys hottentotus natalensis.
    Hart L; Bennett NC; Malpaux B; Chimimba CT; Oosthuizen MK
    Physiol Behav; 2004 Sep; 82(2-3):563-9. PubMed ID: 15276823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The corticotropin-releasing factor (CRF)(1) receptor antagonists CP154,526 and DMP695 inhibit light-induced phase advances of hamster circadian activity rhythms.
    Gannon RL; Millan MJ
    Brain Res; 2006 Apr; 1083(1):96-102. PubMed ID: 16551464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced circadian phase resetting in R192Q Cav2.1 calcium channel migraine mice.
    van Oosterhout F; Michel S; Deboer T; Houben T; van de Ven RC; Albus H; Westerhout J; Vansteensel MJ; Ferrari MD; van den Maagdenberg AM; Meijer JH
    Ann Neurol; 2008 Sep; 64(3):315-24. PubMed ID: 18825664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reorganization of the suprachiasmatic nucleus coding for day length.
    Naito E; Watanabe T; Tei H; Yoshimura T; Ebihara S
    J Biol Rhythms; 2008 Apr; 23(2):140-9. PubMed ID: 18375863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Convergence of circadian and sleep regulatory mechanisms on hypocretin-1.
    Deboer T; Overeem S; Visser NA; Duindam H; Frölich M; Lammers GJ; Meijer JH
    Neuroscience; 2004; 129(3):727-32. PubMed ID: 15541893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurobiology of circadian rhythms.
    Kumar V
    Indian J Exp Biol; 1997 Sep; 35(9):921-32. PubMed ID: 9475072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arginine-vasopressin and vasointestinal polypeptide rhythms in the suprachiasmatic nucleus of the mouse lemur reveal aging-related alterations of circadian pacemaker neurons in a non-human primate.
    Cayetanot F; Bentivoglio M; Aujard F
    Eur J Neurosci; 2005 Aug; 22(4):902-10. PubMed ID: 16115213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus.
    Herzog ED; Huckfeldt RM
    J Neurophysiol; 2003 Aug; 90(2):763-70. PubMed ID: 12660349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of three-hour restricted food access during the light period on circadian rhythms of temperature, locomotor activity, and heart rate in rats.
    Boulamery-Velly A; Simon N; Vidal J; Mouchet J; Bruguerolle B
    Chronobiol Int; 2005; 22(3):489-98. PubMed ID: 16076649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Daily meal timing is not necessary for resetting the main circadian clock by calorie restriction.
    Mendoza J; Drevet K; Pévet P; Challet E
    J Neuroendocrinol; 2008 Feb; 20(2):251-60. PubMed ID: 18088363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus.
    Duncan MJ; Franklin KM; Davis VA; Grossman GH; Knoch ME; Glass JD
    Eur J Neurosci; 2005 Nov; 22(9):2306-14. PubMed ID: 16262668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Circadian rhythms of locomotor activity in solitary and social species of African mole-rats (family: Bathyergidae).
    Oosthuizen MK; Cooper HM; Bennett NC
    J Biol Rhythms; 2003 Dec; 18(6):481-90. PubMed ID: 14667149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serotonin1A autoreceptor activation by S 15535 enhances circadian activity rhythms in hamsters: evaluation of potential interactions with serotonin2A and serotonin2C receptors.
    Gannon RL; Millan MJ
    Neuroscience; 2006; 137(1):287-99. PubMed ID: 16289351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differences in the suprachiasmatic nucleus and lower subparaventricular zone of diurnal and nocturnal rodents.
    Schwartz MD; Nunez AA; Smale L
    Neuroscience; 2004; 127(1):13-23. PubMed ID: 15219664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emergence of circadian and photoperiodic system level properties from interactions among pacemaker cells.
    Beersma DG; van Bunnik BA; Hut RA; Daan S
    J Biol Rhythms; 2008 Aug; 23(4):362-73. PubMed ID: 18663243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenotype of Per1- and Per2-expressing neurons in the suprachiasmatic nucleus of a diurnal rodent (Arvicanthis ansorgei): comparison with a nocturnal species, the rat.
    Dardente H; Klosen P; Caldelas I; Pévet P; Masson-Pévet M
    Cell Tissue Res; 2002 Oct; 310(1):85-92. PubMed ID: 12242487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chronic centrifugation (hypergravity) disrupts the circadian system of the rat.
    Holley DC; DeRoshia CW; Moran MM; Wade CE
    J Appl Physiol (1985); 2003 Sep; 95(3):1266-78. PubMed ID: 12794036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of microgravity and hypergravity on free-running circadian rhythm of the desert beetle Trigonoscelis gigas Reitt.
    Alpatov AM; Rietveld WJ; Oryntaeva LB
    Biol Rhythm Res; 1994 Apr; 25(2):168-77. PubMed ID: 11541428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.