These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11539000)

  • 1. Exclusive accumulation of Z-isomers of monolignols and their glucosides in bark of Fagus grandifolia.
    Lewis NG; Inciong EJ; Ohashi H; Towers GH; Yamamoto E
    Phytochemistry; 1988; 27(7):2119-21. PubMed ID: 11539000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of cis-coniferin in cell-free extracts of Fagus grandifolia Ehrh bark.
    Yamamoto E; Inciong EJ; Davin LB; Lewis NG
    Plant Physiol; 1990; 94(1):209-13. PubMed ID: 11537477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of the absence of stem-specific β-glucosidases on lignin and monolignols.
    Chapelle A; Morreel K; Vanholme R; Le-Bris P; Morin H; Lapierre C; Boerjan W; Jouanin L; Demont-Caulet N
    Plant Physiol; 2012 Nov; 160(3):1204-17. PubMed ID: 22984124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unexpected behavior of coniferin in lignin biosynthesis of Ginkgo biloba L.
    Tsuji Y; Chen F; Yasuda S; Fukushima K
    Planta; 2005 Sep; 222(1):58-69. PubMed ID: 15986215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignification in poplar plantlets fed with deuterium-labelled lignin precursors.
    Rolando C; Daubresse N; Pollet B; Jouanin L; Lapierre C
    C R Biol; 2004; 327(9-10):799-807. PubMed ID: 15587071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic and metabolic engineering for efficient production of syringin, sinapyl alcohol 4-O-glucoside, in Arabidopsis thaliana.
    Chu Y; Kwon T; Nam J
    Phytochemistry; 2014 Jun; 102():55-63. PubMed ID: 24667164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The behavior of deuterium-labeled monolignol and monolignol glucosides in lignin biosynthesis in angiosperms.
    Tsuji Y; Chen F; Yasuda S; Fukushima K
    J Agric Food Chem; 2004 Jan; 52(1):131-4. PubMed ID: 14709025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the specification of consecutive steps in macromolecular lignin assembly.
    Nose M; Bernards MA; Furlan M; Zajicek J; Eberhardt TL; Lewis NG
    Phytochemistry; 1995 May; 39(1):71-9. PubMed ID: 11536693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying acetylated lignin units in non-wood fibers using pyrolysis-gas chromatography/mass spectrometry.
    del Río JC; Gutiérrez A; Martínez AT
    Rapid Commun Mass Spectrom; 2004; 18(11):1181-5. PubMed ID: 15164346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-site modulation of flux during monolignol formation in loblolly pine (Pinus taeda).
    Anterola AM; van Rensburg H; van Heerden PS; Davin LB; Lewis NG
    Biochem Biophys Res Commun; 1999 Aug; 261(3):652-7. PubMed ID: 10441481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin: occurrence, biogenesis and biodegradation.
    Lewis NG; Yamamoto E
    Annu Rev Plant Physiol Plant Mol Biol; 1990; 41():455-96. PubMed ID: 11543592
    [No Abstract]   [Full Text] [Related]  

  • 13. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study.
    Elder T; Rencoret J; Del Río JC; Kim H; Ralph J
    Front Plant Sci; 2021; 12():642848. PubMed ID: 33737945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A beta-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin.
    Dharmawardhana DP; Ellis BE; Carlson JE
    Plant Physiol; 1995 Feb; 107(2):331-9. PubMed ID: 7724669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of syringin, chlorogenic acid and 1,5-dicaffeoylquinic acid biosynthesis in cell suspension cultures of Saussurea involucrata].
    Chen RD; Liu X; Zou JH; Yang L; Dai JG
    Zhongguo Zhong Yao Za Zhi; 2014 Jun; 39(12):2275-80. PubMed ID: 25244758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia.
    Samuels AL; Rensing KH; Douglas CJ; Mansfield SD; Dharmawardhana DP; Ellis BE
    Planta; 2002 Nov; 216(1):72-82. PubMed ID: 12430016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic distribution of syringin in freeze-fixed
    Aoki D; Okumura W; Akita T; Matsushita Y; Yoshida M; Sano Y; Fukushima K
    Plant Direct; 2019 Aug; 3(8):e00155. PubMed ID: 31388649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.
    Hong CY; Park SY; Kim SH; Lee SY; Choi WS; Choi IG
    J Microbiol; 2016 Oct; 54(10):675-85. PubMed ID: 27687230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-inflammatory and antinociceptive effects of sinapyl alcohol and its glucoside syringin.
    Choi J; Shin KM; Park HJ; Jung HJ; Kim HJ; Lee YS; Rew JH; Lee KT
    Planta Med; 2004 Nov; 70(11):1027-32. PubMed ID: 15549657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.