BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11539015)

  • 1. Activity of calcium activated protease in skeletal muscles and its changes in atrophy and stretch.
    Ellis S; Nagainis PA
    Physiologist; 1984; 27(6 Suppl):S73-4. PubMed ID: 11539015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estrogen administration attenuates immobilization-induced skeletal muscle atrophy in male rats.
    Sugiura T; Ito N; Goto K; Naito H; Yoshioka T; Powers SK
    J Physiol Sci; 2006 Dec; 56(6):393-9. PubMed ID: 17052385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects.
    Boonyarom O; Inui K
    Acta Physiol (Oxf); 2006 Oct; 188(2):77-89. PubMed ID: 16948795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calpain and caspase-3 play required roles in immobilization-induced limb muscle atrophy.
    Talbert EE; Smuder AJ; Min K; Kwon OS; Powers SK
    J Appl Physiol (1985); 2013 May; 114(10):1482-9. PubMed ID: 23471945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-activated protease activity in tenotomized muscle.
    Baker JH; Margolis RN
    Muscle Nerve; 1987 Jan; 10(1):34-40. PubMed ID: 3031496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of fiber cell globulization and hyperglycemia-induced lens opacification by aminopeptidase inhibitor bestatin.
    Chandra D; Ramana KV; Wang L; Christensen BN; Bhatnagar A; Srivastava SK
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2285-92. PubMed ID: 12091429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle.
    Murphy RM; Verburg E; Lamb GD
    J Physiol; 2006 Oct; 576(Pt 2):595-612. PubMed ID: 16857710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive stretch reduces calpain activity through nitric oxide pathway in unloaded soleus muscles.
    Xu PT; Li Q; Sheng JJ; Chang H; Song Z; Yu ZB
    Mol Cell Biochem; 2012 Aug; 367(1-2):113-24. PubMed ID: 22547201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Didonna MP; Frigeri A; Nicchia GP; Svelto M; Camerino C; Zallone A; Camerino DC
    Neurobiol Dis; 2005 Mar; 18(2):356-65. PubMed ID: 15686964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Role of calcium-dependent mechanisms in the development of atrophy in postural muscle deprived of gravitational loading].
    Shenkman BS; Nemirovskaia TL
    Aviakosm Ekolog Med; 2009; 43(4):12-20. PubMed ID: 19943516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ovarian hormone status and skeletal muscle inflammation during recovery from disuse in rats.
    McClung JM; Davis JM; Carson JA
    Exp Physiol; 2007 Jan; 92(1):219-32. PubMed ID: 16990367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative morphometric study of the skeletal muscles of normal and streptozotocin-diabetic rats.
    Aughsteen AA; Khair AM; Suleiman AA
    JOP; 2006 Jul; 7(4):382-9. PubMed ID: 16832135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in inorganic phosphate in mouse hindlimb muscles during limb disuse.
    Pathare N; Vandenborne K; Liu M; Stevens JE; Li Y; Frimel TN; Walter GA
    NMR Biomed; 2008 Feb; 21(2):101-10. PubMed ID: 17516466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathology of experimental disuse muscular atrophy in rats.
    Ishikawa T; Shimizu M; Mikawa Y; Zhu BL; Quan L; Li DR; Zhao D; Maeda H
    Connect Tissue Res; 2005; 46(2):101-6. PubMed ID: 16019420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin targeting of rat muscle proteins during short periods of unloading.
    Vermaelen M; Marini JF; Chopard A; Benyamin Y; Mercier J; Astier C
    Acta Physiol Scand; 2005 Sep; 185(1):33-40. PubMed ID: 16128695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentoxifylline inhibits Ca2+-dependent and ATP proteasome-dependent proteolysis in skeletal muscle from acutely diabetic rats.
    Baviera AM; Zanon NM; Carvalho Navegantes LC; Migliorini RH; do Carmo Kettelhut I
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E702-8. PubMed ID: 17077345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in signalling molecule levels in 10-day hindlimb immobilized rat muscles.
    Machida S; Booth FW
    Acta Physiol Scand; 2005 Feb; 183(2):171-9. PubMed ID: 15676058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential adaptation to weightlessness of functional and structural characteristics of rat hindlimb muscles.
    Stevens L; Picquet F; Catinot MP; Mounier Y
    J Gravit Physiol; 1996 Sep; 3(2):54-7. PubMed ID: 11540282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)-dependent proteolysis in muscle wasting.
    Costelli P; Reffo P; Penna F; Autelli R; Bonelli G; Baccino FM
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2134-46. PubMed ID: 15893952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.