BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11539103)

  • 1. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism.
    Weinstein LH; Osmeloski JF; Wettlaufer SH; Galston AW
    Plant Sci; 1987; 51():311-6. PubMed ID: 11539103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies on the control of the bean rust fungus (Uromyces phaseoli L.) by an inhibitor of polyamine biosynthesis.
    Rajam MV; Weinstein LH; Galston AW
    Plant Physiol; 1986; 82(2):485-7. PubMed ID: 11539088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of some polyamine biosynthetic inhibitors on growth and morphology of phytopathogenic fungi.
    Rajam MV; Galston AW
    Plant Cell Physiol; 1985; 26(4):683-92. PubMed ID: 11541300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of polyamine biosynthesis in Crithidia fasciculata by D,L-alpha-difluoromethylornithine and D,L-alpha-difluoromethylarginine.
    Hunter KJ; Strobos CA; Fairlamb AH
    Mol Biochem Parasitol; 1991 May; 46(1):35-43. PubMed ID: 1852175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prevention of a plant disease by specific inhibition of fungal polyamine biosynthesis.
    Rajam MV; Weinstein LH; Galston AW
    Proc Natl Acad Sci U S A; 1985 Oct; 82(20):6874-8. PubMed ID: 3931079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and morphological effects of polyamine biosynthesis inhibitors on Trichophyton and Microsporum.
    Gruhn CM; Boyle SM
    J Med Vet Mycol; 1991; 29(2):63-72. PubMed ID: 1880681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Susceptibility of Microsporum and Trichophyton species to suicide inhibitors of polyamine biosynthesis.
    Boyle SM; Sriranganathan N; Cordes D
    J Med Vet Mycol; 1988; 26(4):227-35. PubMed ID: 3145970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthetic arginine decarboxylase in phytopathogenic fungi.
    Khan AJ; Minocha SC
    Life Sci; 1989; 44(17):1215-22. PubMed ID: 2497290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyamines in Trypanosoma cruzi.
    Schwarcz de Tarlovsky MN; Hernandez SM; Bedoya AM; Lammel EM; Isola EL
    Biochem Mol Biol Int; 1993 Jul; 30(3):547-58. PubMed ID: 8401312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues.
    Slocum RD; Galston AW
    Plant Cell Physiol; 1985; 26(8):1519-26. PubMed ID: 11539696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-difluoromethylornithine (DFMO) as a potent arginase activity inhibitor in human colon carcinoma cells.
    Selamnia M; Mayeur C; Robert V; Blachier F
    Biochem Pharmacol; 1998 Apr; 55(8):1241-5. PubMed ID: 9719479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase.
    Tiburcio AF; Kaur-Sawhney R; Galston AW
    Plant Physiol; 1986; 82(2):375-8. PubMed ID: 11539087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of polyamine biosynthesis inhibition on growth and differentiation of the phytopathogenic fungus Sclerotinia sclerotiorum.
    Pieckenstain FL; Gárriz A; Chornomaz EM; Sánchez DH; Ruiz OA
    Antonie Van Leeuwenhoek; 2001 Dec; 80(3-4):245-53. PubMed ID: 11827210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DL-alpha-difluoromethyl[3,4-3H]arginine metabolism in tobacco and mammalian cells. Inhibition of ornithine decarboxylase activity after arginase-mediated hydrolysis of DL-alpha-difluoromethylarginine to DL-alpha-difluoromethylornithine.
    Slocum RD; Bitonti AJ; McCann PP; Feirer RP
    Biochem J; 1988 Oct; 255(1):197-202. PubMed ID: 3143356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyamine levels as related to growth, differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa.
    Kaur Sawhney R; Shekhawat NS; Galston AW
    Plant Growth Regul; 1985; 3():329-37. PubMed ID: 11539806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamine content of Pneumocystis carinii and response to the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine.
    Merali S; Clarkson AB
    Antimicrob Agents Chemother; 1996 Apr; 40(4):973-8. PubMed ID: 8849262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens.
    Barna B; Leiter E; Hegedus N; Bíró T; Pócsi I
    J Basic Microbiol; 2008 Dec; 48(6):516-20. PubMed ID: 18798177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew.
    Mustafa G; Randoux B; Tisserant B; Fontaine J; Magnin-Robert M; Lounès-Hadj Sahraoui A; Reignault P
    Mycorrhiza; 2016 Oct; 26(7):685-97. PubMed ID: 27130314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyamine metabolism in Pneumocystis carinii.
    Lipschik GY; Masur H; Kovacs JA
    J Infect Dis; 1991 May; 163(5):1121-7. PubMed ID: 2019760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arginine decarboxylase as the source of putrescine for tobacco alkaloids.
    Tiburcio AF; Galston AW
    Phytochemistry; 1986; 25(1):107-10. PubMed ID: 11539094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.