These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 11539124)
21. Oxidant enhancement in martian dust devils and storms: implications for life and habitability. Atreya SK; Wong AS; Renno NO; Farrell WM; Delory GT; Sentman DD; Cummer SA; Marshall JR; Rafkin SC; Catling DC Astrobiology; 2006 Jun; 6(3):439-50. PubMed ID: 16805700 [TBL] [Abstract][Full Text] [Related]
22. The Viking biology experiments: epilogue and prologue. Klein HP Orig Life Evol Biosph; 1992; 21(4):255-61. PubMed ID: 11537541 [TBL] [Abstract][Full Text] [Related]
23. First measurement of helium on Mars: implications for the problem of radiogenic gases on the terrestrial planets. Krasnopolsky VA; Bowyer S; Chakrabarti S; Gladstone GR; McDonald JS Icarus; 1994 Jun; 109(2):337-51. PubMed ID: 11539139 [TBL] [Abstract][Full Text] [Related]
24. Radiation-Driven Formation of Reactive Oxygen Species in Oxychlorine-Containing Mars Surface Analogues. Georgiou CD; Zisimopoulos D; Kalaitzopoulou E; Quinn RC Astrobiology; 2017 Apr; 17(4):319-336. PubMed ID: 28418706 [TBL] [Abstract][Full Text] [Related]
25. Atmospheric energy for subsurface life on Mars? Weiss BP; Yung YL; Nealson KH Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1395-9. PubMed ID: 10660689 [TBL] [Abstract][Full Text] [Related]
26. Exobiology and future Mars missions: the search for Mars' earliest biosphere. McKay CP Adv Space Res; 1986; 6(12):269-85. PubMed ID: 11537831 [TBL] [Abstract][Full Text] [Related]
27. A Maximum Subsurface Biomass on Mars from Untapped Free Energy: CO and H Sholes SF; Krissansen-Totton J; Catling DC Astrobiology; 2019 May; 19(5):655-668. PubMed ID: 30950631 [TBL] [Abstract][Full Text] [Related]
28. Biological instrumentation for the Viking 1975 mission to Mars. Klein HP; Vishniac W Life Sci Space Res; 1972; 10():201-10. PubMed ID: 11898839 [TBL] [Abstract][Full Text] [Related]
29. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars. Quinn R; Orenberg J Geochim Cosmochim Acta; 1993 Oct; 57(19):4611-8. PubMed ID: 11539578 [TBL] [Abstract][Full Text] [Related]
30. The case for planetary sample return missions. 2. History of Mars. Gooding JL; Carr MH; McKay CP Eos (Washington DC); 1989 Aug; 70(31):745, 54-5. PubMed ID: 11538673 [TBL] [Abstract][Full Text] [Related]
31. Smectite clays in Mars soil: evidence for their presence and role in Viking biology experimental results. Banin A; Rishpon J J Mol Evol; 1979 Dec; 14(1-3):133-52. PubMed ID: 42807 [TBL] [Abstract][Full Text] [Related]
32. Did Viking discover life on Mars? Klein HP Orig Life Evol Biosph; 1999 Dec; 29(6):625-31. PubMed ID: 10666745 [TBL] [Abstract][Full Text] [Related]
33. An integrated multi-purpose biology instrument utilizing a single detector, the mass spectrometer. Radmer R; Kok B Life Sci Space Res; 1972; 10():211-25. PubMed ID: 11898840 [TBL] [Abstract][Full Text] [Related]
34. A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station. Linkin V; Harri AM; Lipatov A; Belostotskaja K; Derbunovich B; Ekonomov A; Khloustova L; Kremnev R; Makarov V; Martinov B; Nenarokov D; Prostov M; Pustovalov A; Shustko G; Jarvinen I; Kivilinna H; Korpela S; Kumpulainen K; Lehto A; Pellinen R; Pirjola R; Riihela P; Salminen A; Schmidt W; McKay CP Planet Space Sci; 1998; 46(6-7):717-37. PubMed ID: 11541818 [TBL] [Abstract][Full Text] [Related]
35. Cosmogenic and nucleogenic isotopic changes in Mars: their rates and implications to the evolutionary history of Martian surface. Lal D Geochim Cosmochim Acta; 1993 Oct; 57(19):4627-37. PubMed ID: 11539580 [TBL] [Abstract][Full Text] [Related]
36. Why exobiology on Mars? Brack A Planet Space Sci; 1996 Nov; 44(11):1435-40. PubMed ID: 11541122 [TBL] [Abstract][Full Text] [Related]
37. Mars Surveyor Program '01 Mars Environmental Compatibility Assessment wet chemistry lab: a sensor array for chemical analysis of the Martian soil. Kounaves SP; Lukow SR; Comeau BP; Hecht MH; Grannan-Feldman SM; Manatt K; West SJ; Wen X; Frant M; Gillette T J Geophys Res; 2003 Jul; 108(E7):13-1 - 13-12. PubMed ID: 14686320 [TBL] [Abstract][Full Text] [Related]
38. Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Rothschild LJ Icarus; 1990; 88():246-60. PubMed ID: 11538366 [TBL] [Abstract][Full Text] [Related]
39. Evidence that the reactivity of the martian soil is due to superoxide ions. Yen AS; Kim SS; Hecht MH; Frant MS; Murray B Science; 2000 Sep; 289(5486):1909-12. PubMed ID: 10988066 [TBL] [Abstract][Full Text] [Related]
40. EXOCAM: Mars in a box to simulate soil-atmosphere interactions. Rannou P; Chassefiere E; Encrenaz T; Erard S; Genin JM; Ingrin J; Jambon A; Jolivet JP; Raulin F; Renault P; Rochette P; Person A; Siguier JM; Toublanc D Adv Space Res; 2001; 27(2):189-93. PubMed ID: 11603400 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]