These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11539175)

  • 1. Spectroscopy of Mars from 2.04 to 2.44 micrometers during the 1993 opposition: absolute calibration and atmospheric vs mineralogic origin of narrow absorption features.
    Bell JF 3rd ; Pollack JB; Geballe TR; Cruikshank DP; Freedman R
    Icarus; 1994 Sep; 111(1):106-23. PubMed ID: 11539175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflectance and Mossbauer spectroscopy of ferrihydrite-montmorillonite assemblages as Mars soil analog materials.
    Bishop JL; Pieters CM; Burns RG
    Geochim Cosmochim Acta; 1993; 57():4583-95. PubMed ID: 11539454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials.
    Bishop JL; Pieters CM; Burns RG; Edwards JO; Mancinelli RL; Fröschl H
    Icarus; 1995 Sep; 117(1):101-19. PubMed ID: 11538594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titan's 5 micrometers spectral window: carbon monoxide and the albedo of the surface.
    Noll KS; Geballe TR; Knacke RF; Pendleton YJ
    Icarus; 1996 Dec; 124(2):625-31. PubMed ID: 11539388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aqueous geochemistry on early Mars.
    Schaefer MW
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4619-25. PubMed ID: 11539579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minor constituents in the Martian atmosphere from the ISM/Phobos experiment.
    Rosenqvist J; Drossart P; Combes M; Encrenaz T; Lellouch E; Bibring JP; Erard S; Langevin Y; Chassefiere E
    Icarus; 1992 Aug; 98(2):254-70. PubMed ID: 11539361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-montmorillonite: a spectral analog of Martian soil.
    Banin A; Margulies L; Chen Y
    J Geophys Res; 1985 Feb; 90 Suppl Pt 2():C771-4. PubMed ID: 11542022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory studies of the newly discovered infrared band at 4705.2 cm-1 (2.1253 micrometers) in the spectrum of Io: the tentative identification of CO2.
    Sandford SA; Salama F; Allamandola LJ; Trafton LM; Lester DF; Ramseyer TF
    Icarus; 1991; 91():125-44. PubMed ID: 11538104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTIR reflectance of selected minerals and their mixtures: implications for ground temperature-sensor monitoring on Mars surface environment (NASA/MSL-Rover Environmental Monitoring Station).
    Martín-Redondo MP; Martínez ES; Sampedro MT; Armiens C; Gómez-Elvira J; Martinez-Frias J
    J Environ Monit; 2009 Jul; 11(7):1428-32. PubMed ID: 20449234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfates in the north polar region of Mars detected by OMEGA/Mars Express.
    Langevin Y; Poulet F; Bibring JP; Gondet B
    Science; 2005 Mar; 307(5715):1584-6. PubMed ID: 15718428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption and scattering properties of the Martian dust in the solar wavelengths.
    Ockert-Bell ME; Bell JF 3rd ; Pollack JB; McKay CP; Forget F
    J Geophys Res; 1997 Apr; 102(E4):9039-50. PubMed ID: 11541455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 2.5-12 micrometers spectrum of comet Halley from the IKS-VEGA experiment.
    Combes M; Moroz VI; Crovisier J; Encrenaz T; Bibring JP; Grigoriev AV; Sanko NF; Coron N; Crifo JF; Gispert R; Bockelée-Morvan D; Nikolsky YuV ; Krasnopolsky VA; Owen T; Emerich C; Lamarre JM; Rocard F
    Icarus; 1988; 76():404-36. PubMed ID: 11538667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic identification of carbonate minerals in the martian dust.
    Bandfield JL; Glotch TD; Christensen PR
    Science; 2003 Aug; 301(5636):1084-7. PubMed ID: 12934004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A geochemical model for the formation of hydrothermal carbonates on Mars.
    Griffith LL; Shock EL
    Nature; 1995 Oct; 377(6548):406-8. PubMed ID: 7566116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Science applications of a multispectral microscopic imager for the astrobiological exploration of Mars.
    Núñez JI; Farmer JD; Sellar RG; Swayze GA; Blaney DL
    Astrobiology; 2014 Feb; 14(2):132-69. PubMed ID: 24552233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The resources of Mars for human settlement.
    Meyer TR; McKay CP
    J Br Interplanet Soc; 1989; 42():147-60. PubMed ID: 11539074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The case for a wet, warm climate on early Mars.
    Pollack JB; Kasting JF; Richardson SM; Poliakoff K
    Icarus; 1987; 71():203-24. PubMed ID: 11539035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of the Viking Gas Exchange Experiment using palagonite and Fe-rich montmorillonite as terrestrial analogs: implications for the surface composition of Mars.
    Quinn R; Orenberg J
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4611-8. PubMed ID: 11539578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron-magnesium silicate bioweathering on Earth (and Mars?).
    Fisk MR; Popa R; Mason OU; Storrie-Lombardi MC; Vicenzi EP
    Astrobiology; 2006 Feb; 6(1):48-68. PubMed ID: 16551226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The infrared spectrum of the Galactic center and the composition of interstellar dust.
    Tielens AG; Wooden DH; Allamandola LJ; Bregman J; Witteborn FC
    Astrophys J; 1996 Apr; 461(1 Pt 1):210-22. PubMed ID: 11539170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.