These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 11539402)

  • 1. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
    Anbar AD; Yung YL; Chavez FP
    Global Biogeochem Cycles; 1996 Mar; 10(1):175-90. PubMed ID: 11539402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research advances in methyl bromide in the ocean].
    Du HN; Xie WX; Cui YQ; Chen JL; Ye SY
    Ying Yong Sheng Tai Xue Bao; 2014 Dec; 25(12):3694-700. PubMed ID: 25876424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural methyl bromide and methyl chloride emissions from coastal salt marshes.
    Rhew RC; Miller BR; Weiss RF
    Nature; 2000 Jan; 403(6767):292-5. PubMed ID: 10659844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methyl bromide production from dissolved organic matter under simulated sunlight irradiation and the important effect of ferric ions.
    Liu H; Tong T; Pu Y; Zhu X; Sun B; Wang Z; Yan Z
    Environ Sci Process Impacts; 2020 Mar; 22(3):751-758. PubMed ID: 32067016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bromoform, dibromochloromethane, and dibromomethane over the East China Sea and the western Pacific Ocean: Oceanic emission and spatial variation.
    Liu SS; He Z; Yang GP
    Chemosphere; 2020 Oct; 257():127151. PubMed ID: 32470539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid model of the CO2 geochemical cycle and its application to large impact events.
    Kasting JF; Richardson SM; Pollack JB; Toon OB
    Am J Sci; 1986 May; 286(5):361-89. PubMed ID: 11542044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature.
    Wishkerman A; Gebhardt S; McRoberts CW; Hamilton JT; Williams J; Keppler F
    Environ Sci Technol; 2008 Sep; 42(18):6837-42. PubMed ID: 18853797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abrupt climate change and transient climates during the Paleogene: a marine perspective.
    Zachos JC; Lohmann KC; Walker JC; Wise SW
    J Geol; 1993 Mar; 101(2):191-213. PubMed ID: 11537739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.
    Soerensen AL; Mason RP; Balcom PH; Jacob DJ; Zhang Y; Kuss J; Sunderland EM
    Environ Sci Technol; 2014 Oct; 48(19):11312-9. PubMed ID: 25171182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Description of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide.
    Goodwin KD; Tokarczyk R; Stephens FC; Saltzman ES
    Appl Environ Microbiol; 2005 Jul; 71(7):3495-503. PubMed ID: 16000753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Net Sink for Atmospheric CH3Br in the East Pacific Ocean.
    Lobert JM; Butler JH; Montzka SA; Geller LS; Myers RC; Elkins JW
    Science; 1995 Feb; 267(5200):1002-5. PubMed ID: 17811440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring simultaneous production and consumption fluxes of methyl chloride and methyl bromide in annual temperate grasslands.
    Rhew RC; Abel T
    Environ Sci Technol; 2007 Nov; 41(22):7837-43. PubMed ID: 18075096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural and anthropogenic sources of bromoform and dibromomethane in the oceanographic and biogeochemical regime of the subtropical North East Atlantic.
    Mehlmann M; Quack B; Atlas E; Hepach H; Tegtmeier S
    Environ Sci Process Impacts; 2020 Mar; 22(3):679-707. PubMed ID: 32163052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate-driven trends in contemporary ocean productivity.
    Behrenfeld MJ; O'Malley RT; Siegel DA; McClain CR; Sarmiento JL; Feldman GC; Milligan AJ; Falkowski PG; Letelier RM; Boss ES
    Nature; 2006 Dec; 444(7120):752-5. PubMed ID: 17151666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atmospheric transport and deposition of mineral dust to the ocean: implications for research needs.
    Schulz M; Prospero JM; Baker AR; Dentener F; Ickes L; Liss PS; Mahowald NM; Nickovic S; García-Pando CP; Rodríguez S; Sarin M; Tegen I; Duce RA
    Environ Sci Technol; 2012 Oct; 46(19):10390-404. PubMed ID: 22994868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle.
    McNeil BI; Sasse TP
    Nature; 2016 Jan; 529(7586):383-6. PubMed ID: 26791726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyl Chloride and Methyl Bromide Production and Consumption in Coastal Antarctic Tundra Soils Subject to Sea Animal Activities.
    Zhang W; Jiao Y; Zhu R; Rhew RC
    Environ Sci Technol; 2020 Oct; 54(20):13354-13363. PubMed ID: 32935983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight Into the Formation Paths of Methyl Bromide From Syringic Acid in Aqueous Bromide Solutions Under Simulated Sunlight Irradiation.
    Liu H; Tong T; Pu Y; Sun B; Zhu X; Yan Z
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32245114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological principles of World Ocean monitoring.
    Izrael YA; Tsiban AV
    Environ Monit Assess; 1982 Dec; 2(4):425-33. PubMed ID: 24264354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.