These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

719 related articles for article (PubMed ID: 11539430)

  • 41. [Cryptobiosphere of Mars].
    Gal'chenko VF
    Aviakosm Ekolog Med; 2003; 37(5):15-22. PubMed ID: 14730728
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Planetary environments and the conditions of life.
    Chang S
    Philos Trans R Soc Lond A; 1988; 325():601-10. PubMed ID: 11539065
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars.
    Wierzchos J; Cámara B; de Los Ríos A; Davila AF; Sánchez Almazo IM; Artieda O; Wierzchos K; Gómez-Silva B; McKay C; Ascaso C
    Geobiology; 2011 Jan; 9(1):44-60. PubMed ID: 20726901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of mineral crystals as bio-markers in the search for life on Mars.
    Schwartz DE; Mancinelli RL; Kaneshiro ES
    Adv Space Res; 1992; 12(4):117-9. PubMed ID: 11538129
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exploring for a record of ancient Martian life.
    Farmer JD; Des Marais DJ
    J Geophys Res; 1999 Nov; 104(E11):26977-95. PubMed ID: 11543200
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On biogenicity criteria for endolithic microborings on early Earth and beyond.
    McLoughlin N; Brasier MD; Wacey D; Green OR; Perry RS
    Astrobiology; 2007 Feb; 7(1):10-26. PubMed ID: 17407401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ultraviolet radiation-induced limitation to epilithic microbial growth in arid deserts--dosimetric experiments in the hyperarid core of the Atacama Desert.
    Cockell CS; McKay CP; Warren-Rhodes K; Horneck G
    J Photochem Photobiol B; 2008 Feb; 90(2):79-87. PubMed ID: 18191576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Epilithic lichens in the Beacon sandstone formation, Victoria Land, Antarctica.
    Hale ME
    Lichenologist (Lond); 1987; 19(3):269-87. PubMed ID: 11539716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Antarctic cryptoendolithic ecosystem: relevance to exobiology.
    Friedmann EI; Ocampo-Friedmann R
    Orig Life; 1984; 14(1-4):771-6. PubMed ID: 6462703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A preliminary comparison of two perennially ice-covered lakes in Antarctica: analogs of past Martian lacustrine environments.
    Andersen DT; Doran P; Bolshiyanov D; Rice J; Galchenko V; Cherych N; Wharton RA; McKay CP; Meyer M; Garshnek V
    Adv Space Res; 1995 Mar; 15(3):199-202. PubMed ID: 11539225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Terraforming: making an Earth of Mars.
    McKay CP
    Planet Rep; 1987; 7(6):26-7. PubMed ID: 11539058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exobiology revisited.
    Klein HP
    Adv Space Res; 1986; 6(12):187-92. PubMed ID: 11537820
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Breathing life into Mars: Terraforming and the pivotal role of algae in atmospheric genesis.
    Çelekli A; Zariç ÖE
    Life Sci Space Res (Amst); 2024 May; 41():181-190. PubMed ID: 38670646
    [TBL] [Abstract][Full Text] [Related]  

  • 54. New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks.
    Ascaso C; Wierzchos J
    Int Microbiol; 2002 Dec; 5(4):215-22. PubMed ID: 12497188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrial Heterococcus species from Antarctica: morphological changes during life history and response to temperature.
    Darling RB; Friedmann EI; Broady PA
    J Phycol; 1987; 23():598-607. PubMed ID: 11539047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986.
    Friedmann EI; McKay CP; Nienow JA
    Polar Biol; 1987; 7():273-87. PubMed ID: 11539048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The implantation of life on Mars: feasibility and motivation.
    Haynes RH; McKay CP
    Adv Space Res; 1992; 12(4):133-40. PubMed ID: 11538133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New priorities in the robotic exploration of Mars: the case for in situ search for extant life.
    Davila AF; Skidmore M; Fairén AG; Cockell C; Schulze-Makuch D
    Astrobiology; 2010 Sep; 10(7):705-10. PubMed ID: 20929400
    [No Abstract]   [Full Text] [Related]  

  • 59. Paleolakes on Mars.
    Wharton RA; Crosby JM; McKay CP; Rice JW
    J Paleolimnol; 1995; 13():267-83. PubMed ID: 11539841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A bacterial enrichment study and overview of the extractable lipids from paleosols in the Dry Valleys, Antarctica: implications for future Mars reconnaissance.
    Hart KM; Szpak MT; Mahaney WC; Dohm JM; Jordan SF; Frazer AR; Allen CC; Kelleher BP
    Astrobiology; 2011 May; 11(4):303-21. PubMed ID: 21545270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.