These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 11539431)
21. Deciphering the Role of Trehalose in Pietrafesa D; Napoli A; Iacovelli F; Romeo A; Tucci FG; Billi D; Falconi M Molecules; 2024 Jul; 29(15):. PubMed ID: 39124891 [TBL] [Abstract][Full Text] [Related]
22. The Antarctic cold desert and the search for traces of life on Mars. Friedmann EI Adv Space Res; 1986; 6(12):265-8. PubMed ID: 11537830 [TBL] [Abstract][Full Text] [Related]
23. Extreme environments and exobiology. Friedmann EI Plant Biosyst; 1993; 127(3):369-76. PubMed ID: 11539430 [TBL] [Abstract][Full Text] [Related]
24. Simulated soil crust conditions in a chamber system provide new insights on cyanobacterial acclimation to desiccation. Raanan H; Oren N; Treves H; Berkowicz SM; Hagemann M; Pade N; Keren N; Kaplan A Environ Microbiol; 2016 Feb; 18(2):414-26. PubMed ID: 26234786 [TBL] [Abstract][Full Text] [Related]
25. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations. Baqué M; Scalzi G; Rabbow E; Rettberg P; Billi D Orig Life Evol Biosph; 2013 Oct; 43(4-5):377-89. PubMed ID: 23955666 [TBL] [Abstract][Full Text] [Related]
26. Lithic cyanobacterial communities in the polyextreme Sahara Desert: implications for the search for the limits of life. Mehda S; Muñoz-Martín MÁ; Oustani M; Hamdi-Aïssa B; Perona E; Mateo P Environ Microbiol; 2022 Jan; 24(1):451-474. PubMed ID: 34837297 [TBL] [Abstract][Full Text] [Related]
27. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Murik O; Oren N; Shotland Y; Raanan H; Treves H; Kedem I; Keren N; Hagemann M; Pade N; Kaplan A Environ Microbiol; 2017 Feb; 19(2):535-550. PubMed ID: 27501380 [TBL] [Abstract][Full Text] [Related]
28. Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity. Lefort-Tran M; Pouphile M; Spath S; Packer L Plant Physiol; 1988; 87(3):767-75. PubMed ID: 11537874 [TBL] [Abstract][Full Text] [Related]
29. Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Fleming ED; Castenholz RW Environ Microbiol; 2007 Jun; 9(6):1448-55. PubMed ID: 17504482 [TBL] [Abstract][Full Text] [Related]
30. Lithobiontic life: "Atacama rocks are well and alive". Gómez-Silva B Antonie Van Leeuwenhoek; 2018 Aug; 111(8):1333-1343. PubMed ID: 29392527 [TBL] [Abstract][Full Text] [Related]
31. Plasmid stability in dried cells of the desert cyanobacterium Chroococcidiopsis and its potential for GFP imaging of survivors on Earth and in space. Billi D Orig Life Evol Biosph; 2012 Jun; 42(2-3):235-45. PubMed ID: 22638838 [TBL] [Abstract][Full Text] [Related]
32. [Cell cycle characteristics of Chamaesiphon confervicola, a cyanobacterium forming exospores]. Gromov BV; Mamkaeva KA Mikrobiologiia; 1980; 49(4):551-4. PubMed ID: 6774216 [TBL] [Abstract][Full Text] [Related]
33. Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. Wierzchos J; De Los Ríos A; Sancho LG; Ascaso C J Microsc; 2004 Oct; 216(Pt 1):57-61. PubMed ID: 15369484 [TBL] [Abstract][Full Text] [Related]
34. Rhinosporidiosis: a study that resolves etiologic controversies. Ahluwalia KB; Maheshwari N; Deka RC Am J Rhinol; 1997; 11(6):479-83. PubMed ID: 9438062 [TBL] [Abstract][Full Text] [Related]
35. Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert. Friedmann EI; Weed R Science; 1987 May; 236(4802):703-5. PubMed ID: 11536571 [TBL] [Abstract][Full Text] [Related]
36. Dawn illumination prepares desert cyanobacteria for dehydration. Oren N; Raanan H; Murik O; Keren N; Kaplan A Curr Biol; 2017 Oct; 27(19):R1056-R1057. PubMed ID: 29017037 [TBL] [Abstract][Full Text] [Related]
37. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Garcia-Pichel F; López-Cortés A; Nübel U Appl Environ Microbiol; 2001 Apr; 67(4):1902-10. PubMed ID: 11282648 [TBL] [Abstract][Full Text] [Related]
38. Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Perera I; Subashchandrabose SR; Venkateswarlu K; Naidu R; Megharaj M Appl Microbiol Biotechnol; 2018 Sep; 102(17):7351-7363. PubMed ID: 29982925 [TBL] [Abstract][Full Text] [Related]
39. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Palmer RJ; Friedmann EI Microb Ecol; 1990; 19():111-8. PubMed ID: 11538696 [TBL] [Abstract][Full Text] [Related]
40. Terraforming Mars: dissolution of carbonate rocks by cyanobacteria. Friedmann EI; Hua M; Ocampo-Friedmann R J Br Interplanet Soc; 1993; 46():291-2. PubMed ID: 11540501 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]