BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 11539614)

  • 1. pH profile of the adsorption of nucleotides onto montmorillonite. II. Adsorption and desorption of 5'-AMP in iron-calcium montmorillonite systems.
    Banin A; Lawless JG; Mazzurco J; Church FM; Margulies L; Orenberg JB
    Orig Life Evol Biosph; 1985; 15():89-101. PubMed ID: 11539614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH profile of the adsorption of nucleotides onto montmorillonite. I. Selected homoionic clays.
    Lawless JG; Banin A; Church FM; Mazzurco J; Huff R; Kao J; Cook A; Lowe T; Orenberg JB; Edelson E
    Orig Life Evol Biosph; 1985; 15():77-88. PubMed ID: 11539613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The adsorption of nucleotides and polynucleotides on montmorillonite clay.
    Ferris JP; Ertem G; Agarwal VK
    Orig Life Evol Biosph; 1989; 19(2):153-64. PubMed ID: 11536623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of chlorimuron-ethyl on montmorillonite clays: effects of exchangeable cations, pH, and ionic strength.
    Ren W; Teng Y; Zhou Q; Paschke A; Schüürmann G
    Environ Sci Pollut Res Int; 2014 Oct; 21(19):11587-97. PubMed ID: 25028319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cysteine, thiourea and thiocyanate interactions with clays: FT-IR, Mössbauer and EPR spectroscopy and X-ray diffractometry studies.
    de Santana H; Paesano A; da Costa AC; di Mauro E; de Souza IG; Ivashita FF; de Souza CM; Zaia CT; Zaia DA
    Amino Acids; 2010 Apr; 38(4):1089-99. PubMed ID: 19579002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of the atrazine pesticide interaction with pyrophyllite and Ca(2+) -montmorillonite clay surfaces.
    Belzunces B; Hoyau S; Benoit M; Tarrat N; Bessac F
    J Comput Chem; 2017 Jan; 38(3):133-143. PubMed ID: 27862038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of geochemical reactions and experimental cation exchange in MX 80 bentonite.
    Montes-H G; Fritz B; Clement A; Michau N
    J Environ Manage; 2005 Oct; 77(1):35-46. PubMed ID: 15946786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.
    Greathouse JA; Cygan RT
    Environ Sci Technol; 2006 Jun; 40(12):3865-71. PubMed ID: 16830554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomerization reactions of deoxyribonucleotides on montmorillonite clay: the effect of mononucleotide structure on phosphodiester bond formation.
    Ferris JP; Kamaluddin
    Orig Life Evol Biosph; 1989; 19():609-19. PubMed ID: 11538680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption effect on the degradation of 4,6-o-dinitrocresol and p-nitrophenol in a montmorillonite clay slurry by AFT.
    Ye P; Lemley AT
    Water Res; 2009 Mar; 43(5):1303-12. PubMed ID: 19167019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zearalenone removal in synthetic media and aqueous part of canned corn by montmorillonite K10 and pillared montmorillonite K10.
    Bekci ZM; Antep MK; Merdivan M; Yurdakoç K
    J Food Prot; 2011 Jun; 74(6):954-9. PubMed ID: 21669073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of microcystin-LR onto kaolinite, illite and montmorillonite.
    Liu YL; Walker HW; Lenhart JJ
    Chemosphere; 2019 Apr; 220():696-705. PubMed ID: 30611067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of hydrogen gas and redox processes in clays.
    Didier M; Leone L; Greneche JM; Giffaut E; Charlet L
    Environ Sci Technol; 2012 Mar; 46(6):3574-9. PubMed ID: 22352351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo-inorgano pillared montmorillonite clay.
    Zermane F; Bouras O; Baudu M; Basly JP
    J Colloid Interface Sci; 2010 Oct; 350(1):315-9. PubMed ID: 20638666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil.
    Kulshrestha P; Giese RF; Aga DS
    Environ Sci Technol; 2004 Aug; 38(15):4097-105. PubMed ID: 15352447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption and desorption behavior of copper ions on Na-montmorillonite: effect of rhamnolipids and pH.
    Ozdemir G; Yapar S
    J Hazard Mater; 2009 Jul; 166(2-3):1307-13. PubMed ID: 19178999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide.
    Cao Y; Wei X; Cai P; Huang Q; Rong X; Liang W
    Colloids Surf B Biointerfaces; 2011 Mar; 83(1):122-7. PubMed ID: 21130614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the Interchangeable Cations on the Sorption of Fumaric and Succinic Acids on Montmorillonite and its Relevance in Prebiotic Chemistry.
    Meléndez-López A; Colín-García M; Ortega-Gutiérrez F; Cruz-Castañeda J
    Orig Life Evol Biosph; 2021 Jun; 51(2):87-116. PubMed ID: 34251577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.
    Neumann A; Olson TL; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6969-77. PubMed ID: 23517074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of (calcium-)uranyl-carbonate complexation on U(VI) sorption on Ca- and Na-bentonites.
    Meleshyn A; Azeroual M; Reeck T; Houben G; Riebe B; Bunnenberg C
    Environ Sci Technol; 2009 Jul; 43(13):4896-901. PubMed ID: 19673282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.