These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11539655)

  • 1. Role of minerals in the thermal alteration of organic matter--I: generation of gases and condensates under dry condition.
    Tannenbaum E; Kaplan IR
    Geochim Cosmochim Acta; 1985; 49():2589-604. PubMed ID: 11539655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of minerals in thermal alteration of organic matter--II: a material balance.
    Tannenbaum E; Huizinga BJ; Kaplan IR
    Am Assoc Pet Geol Bull; 1986 Sep; 70(9):1156-65. PubMed ID: 11542070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steranes and triterpanes generated from kerogen pyrolysis in the absence and presence of minerals.
    Tannenbaum E; Ruth E; Kaplan IR
    Geochim Cosmochim Acta; 1986; 50():805-12. PubMed ID: 11542029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of minerals in the thermal alteration of organic matter--IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments.
    Huizinga BJ; Tannenbaum E; Kaplan IR
    Geochim Cosmochim Acta; 1987; 51():1083-97. PubMed ID: 11542080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of minerals in the thermal alteration of organic matter--III. Generation of bitumen in laboratory experiments.
    Huizinga BJ; Tannenbaum E; Kaplan IR
    Org Geochem; 1987; 11(6):591-604. PubMed ID: 11542118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-Mr hydrocarbons generated during hydrous and dry pyrolysis of kerogen.
    Tannenbaum E; Kaplan IR
    Nature; 1985 Oct; 317():708-9. PubMed ID: 11539657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile organic acids generated from kerogen during laboratory heating.
    Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR
    Geochem J; 1986; 20():51-9. PubMed ID: 11542117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological marker distribution in coexisting kerogen, bitumen and asphaltenes in Monterey Formation diatomite, California.
    Tannenbaum E; Ruth E; Huizinga BJ; Kaplan IR
    Org Geochem; 1986; 10(1-3 Pt 1):531-6. PubMed ID: 11540875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-chain carboxylic acids in pyrolysates of Green River kerogen.
    Kawamura K; Tannenbaum E; Huizinga BJ; Kaplan IR
    Org Geochem; 1986; 10():1059-65. PubMed ID: 11542045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dicarboxylic acids generated by thermal alteration of kerogen and humic acids.
    Kawamura K; Kaplan IR
    Geochim Cosmochim Acta; 1987; 51():3201-7. PubMed ID: 11542084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Kerogen Thermal Maturity on Methane Adsorption Capacity: A Molecular Modeling Approach.
    Alafnan S; Solling T; Mahmoud M
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32824866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uranium-bearing stratiform organic matter in paleoplacers of the lower Huronian Supergroup, Elliot Lake--Blind River region, Canada.
    Willingham TO; Nagy B; Nagy LA; Krinsley DH; Mossman DJ
    Can J Earth Sci; 1985; 22():1930-44. PubMed ID: 11542012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Surface Properties of Organic Matter and Clay Minerals in Shale.
    Tian S; Wang T; Li G; Sheng M; Zhang P
    Langmuir; 2019 Apr; 35(17):5711-5718. PubMed ID: 30917659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts.
    Foustoukos DI; Seyfried WE
    Science; 2004 May; 304(5673):1002-5. PubMed ID: 15060286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition.
    Haydary J; Susa D; Dudáš J
    Waste Manag; 2013 May; 33(5):1136-41. PubMed ID: 23428565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geochemistry of Liquid Hydrocarbons and Natural Gases Combined with 1D Basin Modeling of the Oligocene Shale Source Rock System in the Offshore Nile Delta, Egypt.
    El-Said MM; Abd-Allah AMA; Abdel-Aal MH; Hakimi MH; Lashin AA; Abd-El-Naby A
    ACS Omega; 2024 Mar; 9(10):11780-11805. PubMed ID: 38497011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature, mineral-catalyzed air oxidation: a possible new pathway for PAH stabilization in sediments and soils.
    Ghislain T; Faure P; Biache C; Michels R
    Environ Sci Technol; 2010 Nov; 44(22):8547-52. PubMed ID: 20964431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postdiagenetic Changes in Kerogen Properties and Type by Bacterial Oxidation and Dehydrogenation.
    Wilamowska A; Koblowska M; Matlakowska R
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.
    Alstadt KN; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():105-13. PubMed ID: 22261101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.