These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 11539783)
21. Suboxic diagenesis in banded iron formations. Walker JC Nature; 1984 May; 309():340-2. PubMed ID: 11541981 [TBL] [Abstract][Full Text] [Related]
22. Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks. Laufer K; Nordhoff M; Halama M; Martinez RE; Obst M; Nowak M; Stryhanyuk H; Richnow HH; Kappler A Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159791 [TBL] [Abstract][Full Text] [Related]
23. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray absorption fine structure spectroscopy. Li W; Joshi SR; Hou G; Burdige DJ; Sparks DL; Jaisi DP Environ Sci Technol; 2015 Jan; 49(1):203-11. PubMed ID: 25469633 [TBL] [Abstract][Full Text] [Related]
24. Iron and sulfur in the pre-biologic ocean. Walker JC; Brimblecombe P Precambrian Res; 1985; 28():205-22. PubMed ID: 11539662 [TBL] [Abstract][Full Text] [Related]
25. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations. Bray MS; Wu J; Reed BC; Kretz CB; Belli KM; Simister RL; Henny C; Stewart FJ; DiChristina TJ; Brandes JA; Fowle DA; Crowe SA; Glass JB Geobiology; 2017 Sep; 15(5):678-689. PubMed ID: 28419718 [TBL] [Abstract][Full Text] [Related]
26. Anaerobic pyrite oxidation in a naturally occurring pyrite-rich sediment under preload surcharge. Karikari-Yeboah O; Skinner W; Addai-Mensah J Environ Monit Assess; 2019 Mar; 191(4):216. PubMed ID: 30868246 [TBL] [Abstract][Full Text] [Related]
27. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean. Zhou A; Templeton AS; Johnson JE Geobiology; 2024; 22(1):e12587. PubMed ID: 38385601 [TBL] [Abstract][Full Text] [Related]
28. Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture. Meng T; Zhu MX; Ma WW; Gan ZX Environ Sci Pollut Res Int; 2019 Mar; 26(7):6460-6471. PubMed ID: 30623326 [TBL] [Abstract][Full Text] [Related]
29. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment. Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745 [TBL] [Abstract][Full Text] [Related]
30. Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China. Sun Q; Sheng Y; Yang J; Di Bonito M; Mortimer RJG Environ Pollut; 2016 Dec; 219():588-595. PubMed ID: 27344087 [TBL] [Abstract][Full Text] [Related]
31. Dissolution and reduction of magnetite by bacteria. Kostka JE; Nealson KH Environ Sci Technol; 1995 Oct; 29(10):2535-40. PubMed ID: 11539843 [TBL] [Abstract][Full Text] [Related]
32. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Kikuchi S; Makita H; Konno U; Shiraishi F; Ijiri A; Takai K; Maeda M; Takahashi Y Geobiology; 2016 Jul; 14(4):374-89. PubMed ID: 27027643 [TBL] [Abstract][Full Text] [Related]
33. Oxidative transformation of iron monosulfides and pyrite in estuarine sediments: Implications for trace metals mobilisation. Choppala G; Bush R; Moon E; Ward N; Wang Z; Bolan N; Sullivan L J Environ Manage; 2017 Jan; 186(Pt 2):158-166. PubMed ID: 27394083 [TBL] [Abstract][Full Text] [Related]
34. Dissimilatory bioreduction of iron(III) oxides by Shewanella loihica under marine sediment conditions. Benaiges-Fernandez R; Palau J; Offeddu FG; Cama J; Urmeneta J; Soler JM; Dold B Mar Environ Res; 2019 Oct; 151():104782. PubMed ID: 31514974 [TBL] [Abstract][Full Text] [Related]
35. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. Berg JS; Jézéquel D; Duverger A; Lamy D; Laberty-Robert C; Miot J PLoS One; 2019; 14(2):e0212787. PubMed ID: 30794698 [TBL] [Abstract][Full Text] [Related]
36. Reoxidation behavior of technetium, iron, and sulfur in estuarine sediments. Burke IT; Boothman C; Lloyd JR; Livens FR; Charnock JM; McBeth JM; Mortimer RJ; Morris K Environ Sci Technol; 2006 Jun; 40(11):3529-35. PubMed ID: 16786690 [TBL] [Abstract][Full Text] [Related]
37. Cable bacteria regulate sedimentary phosphorus release in freshwater sediments. Xu X; Weng N; Zhang H; van de Velde SJ; Hermans M; Wu F; Huo S Water Res; 2023 Aug; 242():120218. PubMed ID: 37390661 [TBL] [Abstract][Full Text] [Related]
38. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Baldwin DS; Mitchell A Water Res; 2012 Mar; 46(4):965-74. PubMed ID: 22204939 [TBL] [Abstract][Full Text] [Related]
39. Bacterial communities potentially involved in iron-cycling in Baltic Sea and North Sea sediments revealed by pyrosequencing. Reyes C; Dellwig O; Dähnke K; Gehre M; Noriega-Ortega BE; Böttcher ME; Meister P; Friedrich MW FEMS Microbiol Ecol; 2016 Apr; 92(4):fiw054. PubMed ID: 26960392 [TBL] [Abstract][Full Text] [Related]
40. Redox buffering and de-coupling of arsenic and iron in reducing aquifers across the Red River Delta, Vietnam, and conceptual model of de-coupling processes. Sracek O; Berg M; Müller B Environ Sci Pollut Res Int; 2018 Jun; 25(16):15954-15961. PubMed ID: 29589241 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]