These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 11539842)
21. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Nealson KH; Saffarini D Annu Rev Microbiol; 1994; 48():311-43. PubMed ID: 7826009 [TBL] [Abstract][Full Text] [Related]
22. Reactive iron in marine sediments. Canfield DE Geochim Cosmochim Acta; 1989; 53():619-32. PubMed ID: 11539783 [TBL] [Abstract][Full Text] [Related]
23. Anaerobic ammonium oxidation mediated by Mn-oxides: from sediment to strain level. Javanaud C; Michotey V; Guasco S; Garcia N; Anschutz P; Canton M; Bonin P Res Microbiol; 2011 Nov; 162(9):848-57. PubMed ID: 21288484 [TBL] [Abstract][Full Text] [Related]
24. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. Algora C; Vasileiadis S; Wasmund K; Trevisan M; Krüger M; Puglisi E; Adrian L FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 25994158 [TBL] [Abstract][Full Text] [Related]
25. Bacterial contribution to mitigation of iron and manganese in mangrove sediments. Krishnan KP; Fernandes SO; Chandan GS; Loka Bharathi PA Mar Pollut Bull; 2007 Sep; 54(9):1427-33. PubMed ID: 17632183 [TBL] [Abstract][Full Text] [Related]
26. Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities. Bowles MW; Mogollón JM; Kasten S; Zabel M; Hinrichs KU Science; 2014 May; 344(6186):889-91. PubMed ID: 24812207 [TBL] [Abstract][Full Text] [Related]
27. Geochemical and microbiological responses to oxidant introduction into reduced subsurface sediment from the Hanford 300 Area, Washington. Percak-Dennett EM; Roden EE Environ Sci Technol; 2014 Aug; 48(16):9197-204. PubMed ID: 25014732 [TBL] [Abstract][Full Text] [Related]
28. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese. Aguilar C; Nealson KH J Great Lakes Res; 1998; 24(1):93-104. PubMed ID: 11541258 [TBL] [Abstract][Full Text] [Related]
29. Real-time X-ray absorption spectroscopy of uranium, iron, and manganese in contaminated sediments during bioreduction. Tokunag TK; Wan J; Kim Y; Sutton SR; Newville M; Lanzirotti A; Rao W Environ Sci Technol; 2008 Apr; 42(8):2839-44. PubMed ID: 18497132 [TBL] [Abstract][Full Text] [Related]
30. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Nizzoli D; Carraro E; Nigro V; Viaroli P Water Res; 2010 May; 44(9):2715-24. PubMed ID: 20206960 [TBL] [Abstract][Full Text] [Related]
31. Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate, and sulfate. Liikanen A; Flöjt L; Martikainen P J Environ Qual; 2002; 31(1):338-49. PubMed ID: 11837439 [TBL] [Abstract][Full Text] [Related]
32. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Baldwin DS; Mitchell A Water Res; 2012 Mar; 46(4):965-74. PubMed ID: 22204939 [TBL] [Abstract][Full Text] [Related]
33. Nitrification and ammonification in aquatic systems. Ward BB Life Support Biosph Sci; 1996; 3(1-2):25-9. PubMed ID: 11539155 [TBL] [Abstract][Full Text] [Related]
34. Microenvironments and microbial community structure in sediments. Tankéré SP; Bourne DG; Muller FL; Torsvik V Environ Microbiol; 2002 Feb; 4(2):97-105. PubMed ID: 11972619 [TBL] [Abstract][Full Text] [Related]
35. Use of O2 consumption and CO2 production in kinetic cells to delineate pyrite oxidation-carbonate buffering and microbial respiration in unsaturated media. Lee ES; Hendry MJ; Hollings P J Contam Hydrol; 2003 Sep; 65(3-4):203-17. PubMed ID: 12935950 [TBL] [Abstract][Full Text] [Related]
36. Global geochemical cycles of carbon, sulfur and oxygen. Walker JC Mar Geol; 1986; 70():159-74. PubMed ID: 11543319 [TBL] [Abstract][Full Text] [Related]
37. Distributions of microbial activities in deep subseafloor sediments. D'Hondt S; Jørgensen BB; Miller DJ; Batzke A; Blake R; Cragg BA; Cypionka H; Dickens GR; Ferdelman T; Hinrichs KU; Holm NG; Mitterer R; Spivack A; Wang G; Bekins B; Engelen B; Ford K; Gettemy G; Rutherford SD; Sass H; Skilbeck CG; Aiello IW; Guèrin G; House CH; Inagaki F; Meister P; Naehr T; Niitsuma S; Parkes RJ; Schippers A; Smith DC; Teske A; Wiegel J; Padilla CN; Acosta JL Science; 2004 Dec; 306(5705):2216-21. PubMed ID: 15618510 [TBL] [Abstract][Full Text] [Related]
38. Potential rates and pathways of microbial nitrate reduction in coastal sediments. Laverman AM; Van Cappellen P; van Rotterdam-Los D; Pallud C; Abell J FEMS Microbiol Ecol; 2006 Nov; 58(2):179-92. PubMed ID: 17064260 [TBL] [Abstract][Full Text] [Related]
39. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury. Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911 [TBL] [Abstract][Full Text] [Related]
40. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments. Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]