These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11539977)

  • 41. Survival rates of some terrestrial microorganisms under simulated space conditions.
    Koike J; Oshima T; Koike KA; Taguchi H; Tanaka R; Nishimura K; Miyaji M
    Adv Space Res; 1992; 12(4):271-4. PubMed ID: 11538148
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Survival of plant seeds, their UV screens, and nptII DNA for 18 months outside the International Space Station.
    Tepfer D; Zalar A; Leach S
    Astrobiology; 2012 May; 12(5):517-28. PubMed ID: 22680697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions.
    Vaishampayan PA; Rabbow E; Horneck G; Venkateswaran KJ
    Astrobiology; 2012 May; 12(5):487-97. PubMed ID: 22680694
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biological dosimetry of solar radiation for different simulated ozone column thicknesses.
    Horneck G; Rettberg P; Rabbow E; Strauch W; Seckmeyer G; Facius R; Reitz G; Strauch K; Schott JU
    J Photochem Photobiol B; 1996 Feb; 32(3):189-96. PubMed ID: 8622182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inactivation action spectra of Bacillus subtilis spores in extended ultraviolet wavelengths (50-300 nm) obtained with synchrotron radiation.
    Munakata N; Saito M; Hieda K
    Photochem Photobiol; 1991 Nov; 54(5):761-8. PubMed ID: 1798752
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The biological effectiveness of HZE-particles of cosmic radiation studied in the Apollo 16 and 17 Biostack experiments.
    Bucker H; Horneck G
    Acta Astronaut; 1975; 2(3-4):247-64. PubMed ID: 11887916
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extreme spore UV resistance of Bacillus pumilus isolates obtained from an ultraclean Spacecraft Assembly Facility.
    Link L; Sawyer J; Venkateswaran K; Nicholson W
    Microb Ecol; 2004 Feb; 47(2):159-63. PubMed ID: 14502417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Killing and mutagenic action of sunlight upon Bacillus subtilis spores: a dosimetric system.
    Munakata N
    Mutat Res; 1981 Jul; 82(2):263-8. PubMed ID: 6790980
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stratosphere Conditions Inactivate Bacterial Endospores from a Mars Spacecraft Assembly Facility.
    Khodadad CL; Wong GM; James LM; Thakrar PJ; Lane MA; Catechis JA; Smith DJ
    Astrobiology; 2017 Apr; 17(4):337-350. PubMed ID: 28323456
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of UV inactivation of spores of three encephalitozoon species with that of spores of two DNA repair-deficient Bacillus subtilis biodosimetry strains.
    Marshall MM; Hayes S; Moffett J; Sterling CR; Nicholson WL
    Appl Environ Microbiol; 2003 Jan; 69(1):683-5. PubMed ID: 12514061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial endospores and their significance in stress resistance.
    Nicholson WL; Fajardo-Cavazos P; Rebeil R; Slieman TA; Riesenman PJ; Law JF; Xue Y
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):27-32. PubMed ID: 12448702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of ultraviolet radiation on microorganisms as a principal extremal factor of space environment.
    Fedorova RI
    Life Sci Space Res; 1964; 2():305-10. PubMed ID: 11881651
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe
    Yousefzadeh S; Matin AR; Ahmadi E; Sabeti Z; Alimohammadi M; Aslani H; Nabizadeh R
    Food Chem Toxicol; 2018 Apr; 114():334-345. PubMed ID: 29481893
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent radiobiological findings from spaceflight and ground-based studies--an overview.
    Bucker H; Facius R
    Life Sci Space Res; 1980; 18():125-30. PubMed ID: 12197529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial inactivation by solar ultraviolet radiation compared with sensitivity to 254 nm radiation.
    Coohill TP; Sagripanti JL
    Photochem Photobiol; 2009; 85(5):1043-52. PubMed ID: 19659922
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ecological cultivation ark (ECA) project--mutation and evolution of micro-organisms in space.
    Hashimoto H; Kawasaki Y; Kobayashi K; Koike J; Saito T; Sugiura K
    Biol Sci Space; 1998 Jun; 12(2):112-4. PubMed ID: 11541876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial survival of space vacuum and extreme ultraviolet irradiation: strain isolation and analysis during a rocket flight.
    Saffary R; Nandakumar R; Spencer D; Robb FT; Davila JM; Swartz M; Ofman L; Thomas RJ; DiRuggiero J
    FEMS Microbiol Lett; 2002 Sep; 215(1):163-8. PubMed ID: 12393217
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Estimates of radiation doses in space on the basis of current data.
    Foelsche T
    Life Sci Space Res; 1963; 1():48-94. PubMed ID: 12056428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of model predictions with LDEF satellite radiation measurements.
    Armstrong TW; Colborn BL; Harmon BA; Parnell TA; Watts JW; Benton EV
    Adv Space Res; 1994 Oct; 14(10):17-20. PubMed ID: 11539949
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of vacuum-UV radiation (50-190nm) on microorganisms and DNA.
    Ito T
    Adv Space Res; 1992; 12(4):249-53. PubMed ID: 11538145
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.