BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11540103)

  • 1. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria.
    Jensen RA; d'Amato TA; Hochstein LI
    Arch Microbiol; 1988; 148():365-71. PubMed ID: 11540103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymological basis for growth inhibition by L-phenylalanine in the cyanobacterium Synechocystis sp. 29108.
    Hall GC; Jensen RA
    J Bacteriol; 1980 Dec; 144(3):1034-42. PubMed ID: 6108316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered prephenate dehydratase in phenylalanine-excreting mutants of Brevibacterium flavum.
    Shiio I; Sugimoto S
    J Biochem; 1976 Jan; 79(1):173-83. PubMed ID: 7552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single cyclohexadienyl dehydratase specifies the prephenate dehydratase and arogenate dehydratase components of one of two independent pathways to L-phenylalanine in Erwinia herbicola.
    Xia TH; Ahmad S; Zhao GS; Jensen RA
    Arch Biochem Biophys; 1991 May; 286(2):461-5. PubMed ID: 1897969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymological features of aromatic amino acid biosynthesis reflect the phylogeny of mycoplasmas.
    Berry A; Ahmad S; Liss A; Jensen RA
    J Gen Microbiol; 1987 Aug; 133(8):2147-54. PubMed ID: 2895162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interconvertible molecular-weight forms of the bifunctional chorismate mutase-prephenate dehydratase from Acinetobacter calcoaceticus.
    Berry A; Byng GS; Jensen RA
    Arch Biochem Biophys; 1985 Dec; 243(2):470-9. PubMed ID: 4083897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of phenylalanine and tyrosine biosynthesis in Pseudomonas aureofaciens ATCC 15926.
    Blumenstock E; Salcher O; Lingens F
    J Gen Microbiol; 1980 Mar; 117(1):81-7. PubMed ID: 7391822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of Chorismate mutase-prephenate dehydratase and prephenate dehydrogenase from alcaligenes eutrophus.
    Friedrich CG; Friedrich B; Schlegel HG
    J Bacteriol; 1976 May; 126(2):723-32. PubMed ID: 4432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the aromatic pathway in the cyanobacterium Synechococcus sp. strain Pcc6301 (Anacystis nidulans).
    Hall GC; Flick MB; Jensen RA
    J Bacteriol; 1983 Jan; 153(1):423-8. PubMed ID: 6129240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel-shuttle mechanism for the regulation of phenylalanine and tyrosine synthesis at a metabolic branch point in Pseudomonas aeruginosa.
    Calhoun DH; Pierson DL; Jensen RA
    J Bacteriol; 1973 Jan; 113(1):241-51. PubMed ID: 4631707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chorismate mutase:prephenate dehydratase from Acinetobacter calcoaceticus. Purification, properties and immunological cross-reactivity.
    Ahmad S; Wilson AT; Jensen RA
    Eur J Biochem; 1988 Sep; 176(1):69-79. PubMed ID: 3046943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of L-phenylalanine biosynthesis in rRNA homology group I of Pseudomonas.
    Byng GS; Whitaker RJ; Jensen RA
    Arch Microbiol; 1983 Nov; 136(3):163-8. PubMed ID: 6197946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arogenate (pretyrosine) pathway of tyrosine and phenylalanine biosynthesis in Pseudomonas aureofaciens ATCC 15926.
    Keller B; Keller E; Salcher O; Lingens F
    J Gen Microbiol; 1982 Jun; 128(6):1199-202. PubMed ID: 7119734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biosynthesis of phenylalanine and tyrosine in Flavobacteria].
    Waldner-Sander S; Keller B; Keller E; Lingens F
    Hoppe Seylers Z Physiol Chem; 1983 Oct; 364(10):1467-73. PubMed ID: 6642432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prephenate dehydratase of the actinomycete Amycolatopsis methanolica: purification and characterization of wild-type and deregulated mutant proteins.
    Euverink GJ; Wolters DJ; Dijkhuizen L
    Biochem J; 1995 May; 308 ( Pt 1)(Pt 1):313-20. PubMed ID: 7755580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and state of aggregation of Bacillus subtilis prephenate dehydratase in the presence of allosteric effectors.
    Riepl RG; Glover GI
    J Biol Chem; 1979 Oct; 254(20):10321-8. PubMed ID: 114523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymic arrangement and allosteric regulation of the aromatic amino acid pathway in Neisseria gonorrhoeae.
    Berry A; Jensen RA; Hendry AT
    Arch Microbiol; 1987; 149(2):87-94. PubMed ID: 2894820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dynamic progression of evolved character states for aromatic amino acid biosynthesis in gram-negative bacteria.
    Subramaniam P; Bhatnagar R; Hooper A; Jensen RA
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3431-40. PubMed ID: 7533594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of L-serine on the biosynthesis of aromatic amino acids in Escherichia coli.
    Tazuya-Murayama K; Aramaki H; Mishima M; Saito K; Ishida S; Yamada K
    J Nutr Sci Vitaminol (Tokyo); 2006 Aug; 52(4):256-60. PubMed ID: 17087051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clues from Xanthomonas campestris about the evolution of aromatic biosynthesis and its regulation.
    Whitaker RJ; Berry A; Byng GS; Fiske MJ; Jensen RA
    J Mol Evol; 1984-1985; 21(2):139-49. PubMed ID: 6152589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.