BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11540140)

  • 1. Effects of hypergravity on the elongation growth in radish and cucumber hypocotyls.
    Kasahara H; Shiwa M; Takeuchi Y; Yamada M
    J Plant Res; 1995 Mar; 108(1089):59-64. PubMed ID: 11540140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hypergravity on growth and cell wall properties of cress hypocotyls.
    Hoson T; Nishitani K; Miyamoto K; Ueda J; Kamisaka S; Yamamoto R; Masuda Y
    J Exp Bot; 1996 Apr; 47(297):513-7. PubMed ID: 11539399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism.
    Soga K; Wakabayashi K; Hoson T; Kamisaka S
    Adv Space Res; 2001; 27(5):1011-6. PubMed ID: 11596631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graviperception in growth inhibition of plant shoots under hypergravity conditions produced by centrifugation is independent of that in gravitropism and may involve mechanoreceptors.
    Soga K; Wakabayashi K; Kamisaka S; Hoson T
    Planta; 2004 Apr; 218(6):1054-61. PubMed ID: 14716566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of rapid suppression of cell expansion in cucumber hypocotyls after blue-light irradiation.
    Cosgrove DJ
    Planta; 1988; 176():109-16. PubMed ID: 11539804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cucumber hypocotyl cell wall dynamics caused by Azospirillum brasilense inoculation.
    Pereyra CM; Ramella NA; Pereyra MA; Barassi CA; Creus CM
    Plant Physiol Biochem; 2010 Jan; 48(1):62-9. PubMed ID: 19875302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth.
    Cosgrove DJ
    Plant Cell Environ; 1990; 13(3):235-41. PubMed ID: 11537502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls.
    Cosgrove DJ
    Planta; 1989; 177():121-30. PubMed ID: 11539757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CsAGP1, a gibberellin-responsive gene from cucumber hypocotyls, encodes a classical arabinogalactan protein and is involved in stem elongation.
    Park MH; Suzuki Y; Chono M; Knox JP; Yamaguchi I
    Plant Physiol; 2003 Mar; 131(3):1450-9. PubMed ID: 12644694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypocotyl elongation is regulated by supplemental blue and red light in cucumber seedling.
    Song J; Cao K; Hao Y; Song S; Su W; Liu H
    Gene; 2019 Jul; 707():117-125. PubMed ID: 31034942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth restoration in azuki bean and maize seedlings by removal of hypergravity stimuli.
    Soga K; Wakabayashi K; Kamisaka S; Hoson T
    Adv Space Res; 2003; 31(10):2269-74. PubMed ID: 14686442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypergravity-induced changes in gene expression in Arabidopsis hypocotyls.
    Yoshioka R; Soga K; Wakabayashi K; Takeba G; Hoson T
    Adv Space Res; 2003; 31(10):2187-93. PubMed ID: 14686431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of electric and growth responses to excision in cucumber and pea seedlings. I. Short-distance effects are a result of wounding.
    Stahlberg R; Cosgrove DJ
    Plant Cell Environ; 1994; 17():1143-51. PubMed ID: 11537972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autolysis and extension of isolated walls from growing cucumber hypocotyls.
    Cosgrove DJ; Durachko DM
    J Exp Bot; 1994 Nov; 45(Spec Iss):1711-9. PubMed ID: 11540379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation.
    Bo K; Wang H; Pan Y; Behera TK; Pandey S; Wen C; Wang Y; Simon PW; Li Y; Chen J; Weng Y
    Plant Physiol; 2016 Oct; 172(2):1273-1292. PubMed ID: 27559036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth patterns and gravitropic curvature of radish hypocotyls.
    Grisafi F; Manzo D; Trapani S; Sajeva M
    Cytobios; 1996; 86(347):255-64. PubMed ID: 11536782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber.
    Spalding EP; Cosgrove DJ
    Planta; 1989; 178():407-10. PubMed ID: 11537725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative photobiology of growth responses to two UV-B wavebands and UV-C in dim-red-light- and white-light-grown cucumber (Cucumis sativus) seedlings: physiological evidence for photoreactivation.
    Shinkle JR; Derickson DL; Barnes PW
    Photochem Photobiol; 2005; 81(5):1069-74. PubMed ID: 15960589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mannitol inhibits growth of intact cucumber but not pea seedlings by mechanically collapsing the root pressure.
    Stahlberg R; Cosgrove DJ
    Plant Cell Environ; 1997 Sep; 20(9):1135-44. PubMed ID: 11540478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping and identification of CsSh5.1, a gene encoding a xyloglucan galactosyltransferase required for hypocotyl elongation in cucumber (Cucumis sativus L.).
    Zhang K; Pan J; Chen Y; Wei Y; Du H; Sun J; Lv D; Wen H; He H; Wang G; Cai R
    Theor Appl Genet; 2021 Apr; 134(4):979-991. PubMed ID: 33558986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.