BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11540169)

  • 1. Effects of fast clinostat treatment and microgravity on Vicia faba L. mesophyll cell protoplast ubiquitin pools and actin isoforms.
    Schnabl H; Hunte C; Schulz M; Wolf D; Ghiena-Rahlenbeck C; Bramer M; Graab M; Janssen M; Kalweit H
    Microgravity Sci Technol; 1996; 9(4):275-80. PubMed ID: 11540169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of clinorotation and microgravity on sweet clover columella cells treated with cytochalasin D.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Physiol Plant; 1995 Oct; 95(2):267-73. PubMed ID: 11540304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular distribution of calmodulin and calmodulin-binding proteins in Vicia faba L.
    Ling V; Assmann SM
    Plant Physiol; 1992; 100(2):970-8. PubMed ID: 11537871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsomal membrane proteins and vanadate-sensitive ATPase from Vicia faba root tips after clinostat treatment.
    Bramer M; Hunte C; Schulz M; Schnabl H
    Plant Physiol Biochem; 1996 Jul; 34(4):465-72. PubMed ID: 11539386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool.
    Briegleb W
    ASGSB Bull; 1992 Oct; 5(2):23-30. PubMed ID: 11537638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results.
    Cogoli M
    ASGSB Bull; 1992 Oct; 5(2):59-67. PubMed ID: 11537642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats.
    Cai WM; Braun M; Sievers A
    Shi Yan Sheng Wu Xue Bao; 1997 Jun; 30(2):147-55. PubMed ID: 11536934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of statolith mass and grouping in white clover (Trifolium repens) growth in 1-g, microgravity and on the clinostat.
    Smith JD; Todd P; Staehelin LA
    Plant J; 1997 Dec; 12(6):1361-73. PubMed ID: 11536849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical microtubule reorganization in protoplasts isolated from Brassica napus hypocotyl is affected by gravity.
    Skagen EB
    J Gravit Physiol; 1998 Jul; 5(1):P117-20. PubMed ID: 11542315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusion and metabolism of plant cells as affected by microgravity.
    Hampp R; Hoffmann E; Schönherr K; Johann P; De Filippis L
    Planta; 1997; 203 Suppl():S42-53. PubMed ID: 9299795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vegetative growth of higher plants on a three-dimensional clinostat.
    Hoson T; Kamisaka S; Miyamoto K; Ueda J; Yamashita M; Masuda Y
    Microgravity Sci Technol; 1993 Dec; 6(4):278-81. PubMed ID: 11541849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparatory studies for the use of plant protoplasts in space research.
    Rasmussen O; Baggerud C; Iversen TH
    Physiol Plant; 1989 Jul; 76(3 Pt 1):431-7. PubMed ID: 11541111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Expression of PIN and AUX1 genes encoding carrier proteins for auxin polar transport in higher plants under simulated microgravity conditions on a three-dimensional clinostat].
    Hitotsubashi R; Miyamoto K; Ueda J
    Biol Sci Space; 2002 Nov; 16(3):183-4. PubMed ID: 12695613
    [No Abstract]   [Full Text] [Related]  

  • 15. How well does the clinostat mimic the effect of microgravity on plant cells and organs?
    Sievers A; Hejnowicz Z
    ASGSB Bull; 1992 Oct; 5(2):69-75. PubMed ID: 11537643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of simulated and real weightlessness on early regeneration stages of Brassica napus protoplasts.
    Skagen EB; Iversen TH
    In Vitro Cell Dev Biol Plant; 2000; 36(5):312-8. PubMed ID: 11758568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The simulation of microgravity conditions on the ground.
    Albrecht-Buehler G
    ASGSB Bull; 1992 Oct; 5(2):3-10. PubMed ID: 11537639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity and clinorotation cause redistribution of free calcium in sweet clover columella cells.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1995 Jul; 36(5):831-7. PubMed ID: 11536706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental investigations on the fast rotating clinostat.
    Ayed M; Pironneau O; Planel H; Gasset G; Richoilley G
    Microgravity Sci Technol; 1992 Jul; 5(2):98-102. PubMed ID: 11541481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of plant cell protoplasts under microgravity: investigation of protein patterns by SDS-PAGE and immunoblotting.
    Hoffmann E; Schonherr K; Hampp R
    Plant Cell Rep; 1996; 15():914-9. PubMed ID: 11542438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.