These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 11540270)

  • 1. The modern concepts of osseous tissue changes in spaceflight.
    Stupakov GP; Sulayev SA
    J Gravit Physiol; 1996 Sep; 3(2):26-8. PubMed ID: 11540270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modern analysis of bone loss mechanisms in microgravity.
    Oganov VS
    J Gravit Physiol; 2004 Jul; 11(2):P143-6. PubMed ID: 16237819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting skeletal adaptation in altered gravity environments.
    Keller TS; Strauss AM
    J Br Interplanet Soc; 1993 Mar; 46(3):87-96. PubMed ID: 11539499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of microgravity on the skeletal system--a review.
    Droppert PM
    J Br Interplanet Soc; 1990 Jan; 43(1):19-24. PubMed ID: 12856692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The G-factor as a tool to learn more about bone structure and function.
    Zerath E
    J Gravit Physiol; 1999 Jul; 6(1):P77-80. PubMed ID: 11543035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium metabolism and the osteopenia of space flight.
    Scratcherd T; Grundy D
    J Br Interplanet Soc; 1989 Aug; 42(7):371-3. PubMed ID: 11540231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microgravity, calcium and bone metabolism: a new perspective.
    Holick MF
    Acta Astronaut; 1992 Jul; 27():75-81. PubMed ID: 11537602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone and body mass changes during space flight.
    Schneider V; Oganov V; LeBlanc A; Rakmonov A; Taggart L; Bakulin A; Huntoon C; Grigoriev A; Varonin L
    Acta Astronaut; 1995; 36(8-12):463-6. PubMed ID: 11540977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of bone loss and muscle atrophy during manned space flight.
    Keller TS; Strauss AM; Szpalski M
    Microgravity Q; 1992 Apr; 2(2):89-102. PubMed ID: 11541051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes of bone cytokines and compensating regulation in tail suspended rats].
    Cui W; Kan G; Xie L; Liu C
    Space Med Med Eng (Beijing); 1998 Aug; 11(4):291-3. PubMed ID: 11543248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The bone system and weightlessness].
    Stupakov GP; Volozhin AI
    Probl Kosm Biol; 1989; 63():1-184. PubMed ID: 2700800
    [No Abstract]   [Full Text] [Related]  

  • 12. Changes in bone noncollagenous proteins and bone mineral loss in lumbar vertebrae of tail-suspended rats.
    Cui W; Shi Z; Liu C; Zheng Q
    Space Med Med Eng (Beijing); 1997 Dec; 10(6):401-4. PubMed ID: 11540434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential effect of vitamin K on microgravity-induced bone loss.
    Wolf J; Vermeer C
    J Gravit Physiol; 1996 Sep; 3(2):29-32. PubMed ID: 11540271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of the mechanism of Ca loss by bones under microgravity and earth conditions.
    Suvorova EI; Buffat PA
    J Biomed Mater Res; 2002; 63(4):424-32. PubMed ID: 12115751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space flight and bone formation.
    Doty SB
    Materwiss Werksttech; 2004 Dec; 35(12):951-61. PubMed ID: 15895501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone demineralization mechanisms at level of free radicals and nanoscale subsystems of bone tissue.
    Brik A; Oganov V; Rozenfeld L; Atamanenko O; Kalinichenko A; Ovsyannikova L; Bagmut N
    J Gravit Physiol; 2004 Jul; 11(2):P155-6. PubMed ID: 16237822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiology of immobilization osteoporosis.
    Doty SB; DiCarlo EF
    Curr Opin Orthop; 1995 Oct; 6(5):45-9. PubMed ID: 11541523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological effects of space travel.
    Money KE
    Can Aeronaut Space J; 1981; 27(3):195-201. PubMed ID: 11541954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Aging of the osseous tissue. Theoretical basis for new directions of mechanotransduction optimization].
    Avrunin AS; Tikhilov RM; Klimov AV
    Morfologiia; 2005; 128(5):19-28. PubMed ID: 16669239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.