These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11540376)

  • 1. Nuclear fragmentation of high-energy heavy-ion beams in water.
    Schardt D; Schall I; Geissel H; Irnich H; Kraft G; Magel A; Mohar MF; Munzenberg G; Nickel F; Scheidenberger C; Schwab W; Sihver L
    Adv Space Res; 1996; 17(2):87-94. PubMed ID: 11540376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental fragmentation studies with 12C therapy beams.
    Haettner E; Iwase H; Schardt D
    Radiat Prot Dosimetry; 2006; 122(1-4):485-7. PubMed ID: 17145723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microdosimetry measurements characterizing the radiation fields of 300 MeV/u 12C and 185 MeV/u 7Li pencil beams stopping in water.
    Martino G; Durante M; Schardt D
    Phys Med Biol; 2010 Jun; 55(12):3441-9. PubMed ID: 20508316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of nuclear fragmentation of 200 and 400 MeV/u (12)C ions in water for applications in particle therapy.
    Haettner E; Iwase H; Krämer M; Kraft G; Schardt D
    Phys Med Biol; 2013 Dec; 58(23):8265-79. PubMed ID: 24216465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The LET spectra at different penetration depths along secondary 9C and 11C beams.
    Li Q; Komori M; Kanai T; Kitagawa A; Urakabe E; Kanazawa M; Tomitani T; Sato S
    Phys Med Biol; 2004 Nov; 49(22):5119-33. PubMed ID: 15609562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the irradiation field of 12C and 16O SOBP beams using positron emitters produced through projectile fragmentation reactions.
    Inaniwa T; Kohno T; Tomitani T; Sato S
    Phys Med Biol; 2008 Feb; 53(3):529-42. PubMed ID: 18199900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragmentation of 200 and 244 MeV/u carbon beams in thick tissue-like absorbers.
    Golovchenko AN; Skvarc J; Ilic R; Sihver L; Bamblevski VP; Tretyakova SP; Schardt D; Tripathi RK; Wilson JW; Bimbot R
    Nucl Instrum Methods Phys Res B; 1999; 159(4):233-40. PubMed ID: 11542804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PET monitoring of cancer therapy with 3He and 12C beams: a study with the GEANT4 toolkit.
    Pshenichnov I; Larionov A; Mishustin I; Greiner W
    Phys Med Biol; 2007 Dec; 52(24):7295-312. PubMed ID: 18065840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microdosimetry of proton and carbon ions.
    Liamsuwan T; Hultqvist M; Lindborg L; Uehara S; Nikjoo H
    Med Phys; 2014 Aug; 41(8):081721. PubMed ID: 25086531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT.
    Gudowska I; Sobolevsky N; Andreo P; Belkić D; Brahme A
    Phys Med Biol; 2004 May; 49(10):1933-58. PubMed ID: 15214534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial recombination in a parallel-plate ionization chamber exposed to heavy ions.
    Kanai T; Sudo M; Matsufuji N; Futami Y
    Phys Med Biol; 1998 Dec; 43(12):3549-58. PubMed ID: 9869031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy fragment production cross sections from 1.05 GeV/nucleon 56Fe in C, Al, Cu, Pb, and CH2 targets.
    Zeitlin C; Heilbronn L; Miller J; Rademacher SE; Borak T; Carter TR; Frankel KA; Schimmerling W; Stronach CE
    Phys Rev C Nucl Phys; 1997 Jul; 56(1):388-97. PubMed ID: 11541215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion recombination correction in carbon ion beams.
    Rossomme S; Hopfgartner J; Lee ND; Delor A; Thomas RA; Romano F; Fukumura A; Vynckier S; Palmans H
    Med Phys; 2016 Jul; 43(7):4198. PubMed ID: 27370139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams.
    Marinelli M; Prestopino G; Verona C; Verona-Rinati G; Ciocca M; Mirandola A; Mairani A; Raffaele L; Magro G
    Med Phys; 2015 Apr; 42(4):2085-93. PubMed ID: 25832098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cosmic ray radiation effects caused by proton-induced fragmentation.
    Heinrich W; Streibel T; Ahrendt M; Rocher H; Huntrup G
    Radiat Meas; 1997; 28(1-6):537-42. PubMed ID: 11541798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiological physics characteristics of the extracted heavy ion beams of the bevatron.
    Tobias CA; Lyman JT; Chatterjee A; Howard J; Maccabee HD; Raju MR; Smith AR; Sperinde JM; Welch GP
    Science; 1971 Dec; 174(4014):1131-4. PubMed ID: 5133730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line characterization of heavy-ion beams with semiconductor detectors.
    Llacer J; Tobias CA; Holley WR; Kanai T
    Med Phys; 1984; 11(3):266-78. PubMed ID: 6738451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative biological effectiveness for carbon, nitrogen, and oxygen ion beams using passive and scanning techniques evaluated with fully 3D silicon microdosimeters.
    Tran LT; Bolst D; Guatelli S; Pogossov A; Petasecca M; Lerch MLF; Chartier L; Prokopovich DA; Reinhard MI; Povoli M; Kok A; Perevertaylo VL; Matsufuji N; Kanai T; Jackson M; Rosenfeld AB
    Med Phys; 2018 May; 45(5):2299-2308. PubMed ID: 29572856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast neutrons produced by nuclear fragmentation in treatment irradiations with 12C beam.
    Gunzert-Marx K; Schardt D; Simon RS
    Radiat Prot Dosimetry; 2004; 110(1-4):595-600. PubMed ID: 15353714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.
    Rossomme S; Palmans H; Shipley D; Thomas R; Lee N; Romano F; Cirrone P; Cuttone G; Bertrand D; Vynckier S
    Phys Med Biol; 2013 Aug; 58(16):5363-80. PubMed ID: 23877166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.