These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11540427)

  • 1. Scattering of water from the glycerol liquid-vacuum interface.
    Benjamin I; Wilson MA; Pohorille A; Nathanson GM
    Chem Phys Lett; 1995 Sep; 243(3-4):222-8. PubMed ID: 11540427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics of the water liquid-vapor interface.
    Wilson MA; Pohorille A; Pratt LR
    J Phys Chem; 1987; 91(19):4873-8. PubMed ID: 11539733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of monovalent ions with the water liquid-vapor interface: a molecular dynamics study.
    Wilson MA; Pohorille A
    J Chem Phys; 1991 Oct; 95(8):6005-13. PubMed ID: 11538294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study.
    Wilson MA; Pohorille A
    J Phys Chem B; 1997 Apr; 101(16):3130-5. PubMed ID: 11540504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isomerization reaction dynamics and equilibrium at the liquid-vapor interface of water. A molecular-dynamics study.
    Benjamin I; Pohorille A
    J Chem Phys; 1993 Jan; 98(1):236-42. PubMed ID: 11539443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular potential for thermal H2O-He collisions.
    Palma A; Green S; DeFrees DJ; McLean AD
    J Chem Phys; 1988 Aug; 89(3):1401-7. PubMed ID: 11538473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study on the solvent dependent heme cooling following ligand photolysis in carbonmonoxy myoglobin.
    Zhang Y; Fujisaki H; Straub JE
    J Phys Chem B; 2007 Mar; 111(12):3243-50. PubMed ID: 17388441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Energetics of model amphiphilic molecules at the water liquid-vapor interface. A molecular dynamics study.
    Pohorille A; Benjamin I
    J Phys Chem; 1993; 97(11):2664-70. PubMed ID: 11539476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics of phenol at the liquid-vapor interface of water.
    Pohorille A; Benjamin I
    J Chem Phys; 1991 Apr; 94(8):5599-605. PubMed ID: 11540075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen-bond dynamics in the air-water interface.
    Liu P; Harder E; Berne BJ
    J Phys Chem B; 2005 Feb; 109(7):2949-55. PubMed ID: 16851308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of anesthetics with the water-hexane interface. A molecular dynamics study.
    Chipot C; Wilson MA; Pohorille A
    J Phys Chem B; 1997 Jan; 101(5):782-91. PubMed ID: 11542402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of temperature and glycerol on the hydrogen-bond dynamics of water.
    Ghattyvenkatakrishna PK; Uberbacher EC
    Cryo Letters; 2013; 34(2):166-73. PubMed ID: 23625085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of the potential energy surfaces of glycerol in the gas and aqueous phases: effects of level of theory, basis set, and solvation on strongly intramolecularly hydrogen-bonded systems.
    Callam CS; Singer SJ; Lowary TL; Hadad CM
    J Am Chem Soc; 2001 Nov; 123(47):11743-54. PubMed ID: 11716731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces.
    Schrader AM; Cheng CY; Israelachvili JN; Han S
    J Chem Phys; 2016 Jul; 145(4):041101. PubMed ID: 27475340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of hydrogen bonds in hydrophobicity: the free energy of cavity formation in water models with and without the hydrogen bonds.
    Madan B; Lee B
    Biophys Chem; 1994 Aug; 51(2-3):279-86; discussion 286-9. PubMed ID: 7919039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the first coordination shell in liquid water.
    Wernet P; Nordlund D; Bergmann U; Cavalleri M; Odelius M; Ogasawara H; Näslund LA; Hirsch TK; Ojamäe L; Glatzel P; Pettersson LG; Nilsson A
    Science; 2004 May; 304(5673):995-9. PubMed ID: 15060287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of glycerol-water binary mixtures on the structure and dynamics of protein solutions.
    Ghattyvenkatakrishna PK; Carri GA
    J Biomol Struct Dyn; 2014; 32(3):424-37. PubMed ID: 23581791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures.
    Dashnau JL; Nucci NV; Sharp KA; Vanderkooi JM
    J Phys Chem B; 2006 Jul; 110(27):13670-7. PubMed ID: 16821896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preference for isolated water molecules in a concentrated glycerol-water mixture.
    Towey JJ; Soper AK; Dougan L
    J Phys Chem B; 2011 Jun; 115(24):7799-807. PubMed ID: 21612256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of hydrogen bonds in the fast dynamics of binary glasses of trehalose and glycerol: a molecular dynamics simulation study.
    Dirama TE; Carri GA; Sokolov AP
    J Chem Phys; 2005 Mar; 122(11):114505. PubMed ID: 15836227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.