BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11540592)

  • 1. Inference of a 7.75 eV lower limit in the ultraviolet pumping of interstellar polycyclic aromatic hydrocarbon cations with resulting unidentified infrared emissions.
    Robinson MS; Beegle LW; Wdowiak TJ
    Astrophys J; 1997 Jan; 474(1):474-8. PubMed ID: 11540592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory investigation of the contribution of complex aromatic/aliphatic polycyclic hybrid molecular structures to interstellar ultraviolet extinction and infrared emission.
    Arnoult KM; Wdowiak TJ; Beegle LW
    Astrophys J; 2000 Jun; 535(2 Pt 1):815-22. PubMed ID: 11543517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated infrared emission spectra of highly excited polyatomic molecules: a detailed model of the PAH-UIR hypothesis.
    Cook DJ; Saykally RJ
    Astrophys J; 1998 Feb; 493 Pt 1(2):793-802. PubMed ID: 11541733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the polycyclic aromatic hydrocarbon-diffuse interstellar band proposal.
    Salama F; Bakes EL; Allamandola LJ; Tielens AG
    Astrophys J; 1996 Feb; 458(2 Pt 1):621-36. PubMed ID: 11538558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstellar polycyclic aromatic hydrocarbons: the infrared emission bands, the excitation/emission mechanism, and the astrophysical implications.
    Allamandola LJ; Tielens AG; Barker JR
    Astrophys J Suppl Ser; 1989 Dec; 71():733-75. PubMed ID: 11542189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex organic molecules in space: the carriers of the interstellar infrared emission features.
    Hudgins DM; Allamandola LJ; Sandford SA
    Adv Space Res; 1997; 19(7):999-1008. PubMed ID: 11541347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripherally hydrogenated neutral polycyclic aromatic hydrocarbons as carriers of the 3 micron interstellar infrared emission complex: results from single-photon infrared emission spectroscopy.
    Wagner DR; Kim HS; Saykally RJ
    Astrophys J; 2000 Dec; 545(2 Pt 1):854-60. PubMed ID: 11878349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrared emission spectra of candidate interstellar aromatic molecules.
    Cook DJ; Schlemmer S; Balucani N; Wagner DR; Steiner B; Saykally RJ
    Nature; 1996 Mar; 380(6571):227-9. PubMed ID: 8637570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1. Matrix-isolated naphthalene and perdeuterated naphthalene.
    Hudgins DM; Sandford SA; Allamandola LJ
    J Phys Chem; 1994 Apr; 98(16):4243-53. PubMed ID: 12269375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 2. The members of the thermodynamically most favorable series through coronene.
    Hudgins DM; Allamandola LJ
    J Phys Chem; 1995 Mar; 99(10):3033-46. PubMed ID: 11538457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unidentified interstellar infrared bands: PAHs as carriers?
    Schlemmer S; Cook DJ; Harrison JA; Wurfel B; Chapman W; Saykally RJ
    Science; 1994 Sep; 265():1686-9. PubMed ID: 11539830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 4. The tetracyclic PAH isomers chrysene and 1,2-benzanthracene.
    Hudgins DM; Allamandola LJ
    J Phys Chem A; 1997 May; 101(18):3472-7. PubMed ID: 11541094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogenated polycyclic aromatic hydrocarbons and the 2940 and 2850 wavenumber (3.40 and 3.51 micron) infrared emission features.
    Bernstein MP; Sandford SA; Allamandola LJ
    Astrophys J; 1996 Dec; 472(2):L127-30. PubMed ID: 11541245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variation of the 3.29 and 3.40 micron emission bands within reflection nebulae and the photochemical evolution of methylated polycyclic aromatic hydrocarbons.
    Joblin C; Tielens AG; Allamandola LJ; Geballe TR
    Astrophys J; 1996 Feb; 458(2 Pt 1):610-20. PubMed ID: 11538557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenched Carbonaceous Composite: a laboratory analog for carbonaceous material in the interstellar medium.
    Tokunaga AT; Wada S
    Adv Space Res; 1997; 19(7):1009-17. PubMed ID: 11541327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The discovery of a new infrared emission feature at 1905 wavenumbers (5.25 microns) in the spectrum of BD +30 degrees 3639 and its relation to the polycyclic aromatic hydrocarbon model.
    Allamandola LJ; Bregman JD; Sandford SA; Tielens AG; Witteborn FC; Wooden DH; Rank D
    Astrophys J; 1989 Oct; 345(1):L59-62. PubMed ID: 11538325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. 3. The polyacenes anthracene, tetracene, and pentacene.
    Hudgins DM; Allamandola LJ
    J Phys Chem; 1995 Jun; 99(22):8978-86. PubMed ID: 11538316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of organic matter in interstellar grains.
    Pendleton YJ
    Orig Life Evol Biosph; 1997 Jun; 27(1-3):53-78. PubMed ID: 9150567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers.
    Cook DJ; Schlemmer S; Balucani N; Wagner DR; Harrison JA; Steiner B; Saykally RJ
    J Phys Chem A; 1998 Feb; 102(9):1465-81. PubMed ID: 11542815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons: effect of ionization.
    De Frees DJ; Miller MD; Talbi D; Pauzat F; Ellinger Y
    Astrophys J; 1993 May; 408(2):530-8. PubMed ID: 11539450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.