These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11540665)

  • 1. Response of insect activity rhythms to altered gravitational environments.
    Hoban-Higgins TM; Alpatov AM; Wassmer GT; Reitveld WJ; Fuller CA
    J Gravit Physiol; 1997 Jul; 4(2):P109-10. PubMed ID: 11540665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of microgravity on circadian rhythms in insects.
    Alpatov AM; Hoban-Higgins TM; Fuller CA; Lazarev AO; Rietveld WJ; Tschernyshev VB; Tumurova EG; Wassmer G; Zotov VA
    J Gravit Physiol; 1998 Jul; 5(1):P1-4. PubMed ID: 11542306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravitational biology on Mir.
    Hoban-Higgins TM
    J Gravit Physiol; 1998 Jul; 5(1):P181-4. PubMed ID: 11542346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of microgravity and hypergravity on free-running circadian rhythm of the desert beetle Trigonoscelis gigas Reitt.
    Alpatov AM; Rietveld WJ; Oryntaeva LB
    Biol Rhythm Res; 1994 Apr; 25(2):168-77. PubMed ID: 11541428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravity and light effects on the circadian clock of a desert beetle, Trigonoscelis gigas.
    Hoban-Higgins TM; Alpatov AM; Wassmer GT; Rietveld WJ; Fuller CA
    J Insect Physiol; 2003 Jul; 49(7):671-5. PubMed ID: 12837319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Sand-desert tenebrionid beetle Trigonoscelis gigas reitter: a promising biological model for space chronobiology].
    Alpatov AM; Chernyshov VB; Zotov VA; Reitveld WJ
    Aviakosm Ekolog Med; 2000; 34(1):58-61. PubMed ID: 10732200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Free course of circadian rhythms in Trigonoscelis gigas beetles after space flight].
    Alpatov AM; Evstratov IuA; Chernyshev VB; Lebedev MI; Zotov VA
    Kosm Biol Aviakosm Med; 1989; 23(6):31-3. PubMed ID: 2625974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian organization of a subarctic rodent, the northern red-backed vole (Clethrionomys rutilus).
    Tavernier RJ; Largen AL; Bult-Ito A
    J Biol Rhythms; 2004 Jun; 19(3):238-47. PubMed ID: 15155010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms.
    López-Olmeda JF; Madrid JA; Sánchez-Vázquez FJ
    Chronobiol Int; 2006; 23(3):537-50. PubMed ID: 16753940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photic and non-photic effects on the daily activity pattern of Mongolian gerbils.
    Weinert D; Weinandy R; Gattermann R
    Physiol Behav; 2007 Feb; 90(2-3):325-33. PubMed ID: 17084868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of circadian rhythms in rat pups exposed to microgravity during gestation.
    Hoban-Higgins TM; Murakami DM; Tang IH; Fuller PM; Fuller CA
    J Gravit Physiol; 1999 Oct; 6(2):71-9. PubMed ID: 11543088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian entrainment and phase resetting differ markedly under dimly illuminated versus completely dark nights.
    Evans JA; Elliott JA; Gorman MR
    Behav Brain Res; 2005 Jul; 162(1):116-26. PubMed ID: 15922072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new tracking system for the measurement of diel locomotor rhythms in the Norway lobster, Nephrops norvegicus (L.).
    Aguzzi J; Sarriá D; García JA; Del Rio J; Sardà F; Manuel A
    J Neurosci Methods; 2008 Aug; 173(2):215-24. PubMed ID: 18606187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of restraint and cabin environment on skin temperature, sleep-wake, feeding and drinking circadian rhythms in Macaca mulatta during spacelab flight simulation.
    Demaria-Pesce VH; Balzamo E
    J Gravit Physiol; 1994 May; 1(1):P71-2. PubMed ID: 11538769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian behavioral and melatonin rhythms in the European starling under light-dark cycles with steadily changing periods: evidence for close mutual coupling?
    Kumar V; Van't Hof TJ; Gwinner E
    Horm Behav; 2007 Nov; 52(4):409-16. PubMed ID: 17714714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii).
    Valentinuzzi VS; Oda GA; Araujo JF; Ralph MR
    Chronobiol Int; 2009 Jan; 26(1):14-27. PubMed ID: 19142755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circadian regulation of agonistic behavior in groups of parthenogenetic marbled crayfish, Procambarus sp.
    Farca Luna AJ; Hurtado-Zavala JI; Reischig T; Heinrich R
    J Biol Rhythms; 2009 Feb; 24(1):64-72. PubMed ID: 19150930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.