BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11540698)

  • 1. Development of gravity-sensing organs in altered gravity conditions: opposite conclusions from an amphibian and a molluscan preparation.
    Wiederhold ML; Pedrozo HA; Harrison JL; Hejl R; Gao W
    J Gravit Physiol; 1997 Jul; 4(2):P51-4. PubMed ID: 11540698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of gravity-sensing organs in altered gravity.
    Wiederhold ML; Gao WY; Harrison JL; Hejl R
    Gravit Space Biol Bull; 1997 Jun; 10(2):91-6. PubMed ID: 11540125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Otoliths developed in microgravity.
    Wiederhold ML; Harrison JL; Parker K; Nomura H
    J Gravit Physiol; 2000 Jul; 7(2):P39-42. PubMed ID: 12697538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on vestibular organs in the fry of mutant Medaka.
    Mizuno R; Ijiri K
    Biol Sci Space; 2003 Oct; 17(3):236-7. PubMed ID: 14676394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OFO experimental techniques and preliminary conclusions: is artificial gravity needed during prolonged weightlessness?
    Gualtierotti T; Bracchi F
    Life Sci Space Res; 1972; 10():121-32. PubMed ID: 11898832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Otolith functions in weightlessness.
    Gerathewohl SJ
    Life Sci Space Res; 1975; 13():33-40. PubMed ID: 11913428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of statoconia accumulation in gravireceptors of mollusks.
    Kondrachuk AV; Wiederhold ML
    J Gravit Physiol; 2001 Jul; 8(1):P109-10. PubMed ID: 12650192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light microscopic analysis of the gravireceptor in Xenopus larvae developed in hypogravity.
    Briegleb W; Neubert J; Schatz A; Kruse B
    Adv Space Res; 1989; 9(11):241-4. PubMed ID: 11537338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanism of adaptation to hypergravity in the statocyst of Aplysia californica.
    Pedrozo HA; Schwartz Z; Luther M; Dean DD; Boyan BD; Wiederhold ML
    Hear Res; 1996 Dec; 102(1-2):51-62. PubMed ID: 8951450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early development in aquatic vertebrates in near weightlessness during the D-2 Mission STATEX project.
    Neubert J; Schatz A; Briegleb W; Bromeis B; Linke-Hommes A; Rahmann H; Slenzka K; Horn E
    Adv Space Res; 1996; 17(6-7):275-9. PubMed ID: 11538629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of otoconia in the Japanese red-bellied newt, Cynops pyrrhogaster.
    Wiederhold ML; Yamashita M; Larsen K; Asashima M
    Adv Space Res; 1994; 14(8):327-30. PubMed ID: 11537935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of gravity in the phylogeny of structure and function in animal sensors of spatial orientation, and their predicted action in weightlessness.
    Vinnikov YA; Gazenko OG; Titova LK; Bronstein AA; Tsirulis TP; Pevzner RA; Govardovskii VI; Gribakin FG; Pal'mbakh LP; Aronova MZ; Mashinskii AL; Ivanov VP; Kharkeevich TA; Pyatkina GA
    Life Sci Space Res; 1974; 12():159-76. PubMed ID: 11911144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of vestibular connections in rat embryos in microgravity.
    Bruce LL; Fritzsch B
    J Gravit Physiol; 1997 Jul; 4(2):P59-62. PubMed ID: 11540700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Critical periods" in vestibular development or adaptation of gravity sensory systems to altered gravitational conditions?
    Horn ER
    Arch Ital Biol; 2004 May; 142(3):155-74. PubMed ID: 15260375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of gravity, hypergravity and microgravity on vestibular neurones of the crab.
    Fraser PJ; Araujo R; Alferez D; Carneiro MJ; Pollard M
    J Gravit Physiol; 2004 Jul; 11(2):P1-4. PubMed ID: 16229107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graviresponses in Paramecium biaurelia under different accelerations: studies on the ground and in space.
    Hemmersbach R; Voormanns R; Hader DP
    J Exp Biol; 1996 Oct; 199(Pt 10):2199-205. PubMed ID: 11541118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vestibulo-ocular reflex of hypergravity rats.
    Wubbels RJ; de Jong HA
    J Gravit Physiol; 2001 Jul; 8(1):P113-4. PubMed ID: 12650194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statoconia formation in molluscan statocysts.
    Wiederhold ML; Sheridan CE; Smith NK
    Scan Electron Microsc; 1986; (Pt 2):781-92. PubMed ID: 11539732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Plasticity of stastocyst inertial mass in terraneous gastropods helix lucorum and pomatias rivulare in altering gravitational field (microgravity, hypergravity)].
    Gorgiladze GI; Bukiia RD; Kalandarishvili ÉL; Korotkova EV; Taktakishvili AD; Davitashvili MT; Gelashvili NSh
    Aviakosm Ekolog Med; 2011; 45(5):28-33. PubMed ID: 22312858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.