BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 11540722)

  • 1. Suppression of gravitropic response of primary roots by submergence.
    Hoson T; Kamisaka S; Masuda Y
    Planta; 1996 May; 199(1):100-4. PubMed ID: 11540722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors.
    Lee JS; Mulkey TJ; Evans ML
    Planta; 1984; 160():536-43. PubMed ID: 11540830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automorphosis of higher plants on a 3-D clinostat.
    Hoson T; Kamisaka S; Yamashita M; Masuda Y
    Adv Space Res; 1998; 21(8-9):1229-38. PubMed ID: 11541377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays.
    Lee JS; Chang W-K ; Evans ML
    Plant Physiol; 1990; 94(4):1770-5. PubMed ID: 11537475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vegetative growth of higher plants on a three-dimensional clinostat.
    Hoson T; Kamisaka S; Miyamoto K; Ueda J; Yamashita M; Masuda Y
    Microgravity Sci Technol; 1993 Dec; 6(4):278-81. PubMed ID: 11541849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automorphosis of etiolated pea seedlings in space is simulated by a three-dimensional clinostat and the application of inhibitors of auxin polar transport.
    Miyamoto K; Hoshino T; Yamashita M; Ueda J
    Physiol Plant; 2005 Apr; 123(4):467-74. PubMed ID: 15844285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomic straightening after gravitropic curvature of cress roots.
    Stankovic B; Volkmann D; Sack FD
    Plant Physiol; 1998 Jul; 117(3):893-900. PubMed ID: 9662531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polar auxin transport is essential to maintain growth and development of etiolated pea and maize seedlings grown under 1 g conditions: Relevance to the international space station experiment.
    Miyamoto K; Inui A; Uheda E; Oka M; Kamada M; Yamazaki C; Shimazu T; Kasahara H; Sano H; Suzuki T; Higashibata A; Ueda J
    Life Sci Space Res (Amst); 2019 Feb; 20():1-11. PubMed ID: 30797426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose.
    Jaffe MJ; Leopold AC
    Planta; 1984 May; 161(1):20-6. PubMed ID: 11541962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The promotive effect of latrunculin B on maize root gravitropism is concentration dependent.
    Blancaflor EB; Hou GC; Mohamalawari DR
    Adv Space Res; 2003; 31(10):2215-20. PubMed ID: 14686435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrotropism in pea roots in a porous-tube water delivery system.
    Takahashi H; Brown CS; Dreschel TW; Scott TK
    HortScience; 1992 May; 27(5):430-2. PubMed ID: 11537612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots.
    Kim HJ; Kobayashi A; Fujii N; Miyazawa Y; Takahashi H
    Physiol Plant; 2016 May; 157(1):108-18. PubMed ID: 26565659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops.
    Kong X; Xiong Y; Song X; Wadey S; Yu S; Rao J; Lale A; Lombardi M; Fusi R; Bhosale R; Huang G
    Plant Physiol; 2024 Jun; 195(3):1969-1980. PubMed ID: 38446735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of hydrotropism in clinorotated seedling roots of Alaska pea, Pisum sativum L.
    Takahashi H; Takano M; Fujii N; Yamashita M; Suge H
    J Plant Res; 1996 Sep; 109(1095):335-7. PubMed ID: 11539859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model.
    Edelmann HG; Roth U
    Protoplasma; 2006 Dec; 229(2-4):183-91. PubMed ID: 17180500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrotropism of maize roots. Role of the root cap and relationship to gravitropism.
    Ishikawa H; Evans ML
    Plant Physiol; 1990; 94(3):913-8. PubMed ID: 11537481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations into the possible regulation of negative gravitropic curvature in intact Avena sativa plants and in isolated stem segments by ethylene and gibberellins.
    Kaufman P; Pharis RP; Reid DM; Beall FD
    Physiol Plant; 1985; 65():237-44. PubMed ID: 11540850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perception mechanism of gravity stimuli in hypergravity-induced growth inhibition of azuki bean roots.
    Soga K; Wakabayashi K; Kamisaka S; Hoson T
    Biol Sci Space; 2003 Oct; 17(3):179-80. PubMed ID: 14676362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth and gravireaction of maize roots treated with a phytotropin.
    Geissler AE; Pilet PE; Katekar GF
    J Plant Physiol; 1985; 119():25-34. PubMed ID: 11542660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the epidermis and cortex in gravitropic curvature of maize roots.
    Björkman T; Cleland RE
    Planta; 1988 Dec; 176(4):513-8. PubMed ID: 11538997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.