These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 11540902)

  • 1. Oxidation of indole-3-acetic acid and oxindole-3-acetic acid to 2,3-dihydro-7-hydroxy-2-oxo-1H indole-3-acetic acid-7'-O-beta-D-glucopyranoside in Zea mays seedlings.
    Nonhebel HM; Bandurski RS
    Plant Physiol; 1984; 76(4):979-83. PubMed ID: 11540902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings.
    Nonhebel HM
    J Exp Bot; 1986 Nov; 37(184):1691-7. PubMed ID: 11539687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indole-3-acetic acid catabolism in Zea mays seedlings. Metabolic conversion of oxindole-3-acetic acid to 7-hydroxy-2-oxindole-3-acetic acid 7'-O-beta-D-glucopyranoside.
    Nonhebel HM; Kruse LI; Bandurski RS
    J Biol Chem; 1985 Oct; 260(23):12685-9. PubMed ID: 4044604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays.
    Reinecke DM; Bandurski RS
    Plant Physiol; 1988; 86(3):868-72. PubMed ID: 11538238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays.
    Lewer P; Bandurski RS
    Phytochemistry; 1987; 26(5):1247-50. PubMed ID: 11539052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays.
    Komoszynski M; Bandurski RS
    Plant Physiol; 1986; 80(4):961-4. PubMed ID: 11539040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue.
    Chisnell JR
    Plant Physiol; 1984; 74(2):278-83. PubMed ID: 11540816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L.
    Chisnell JR; Bandurski RS
    Plant Physiol; 1988; 86(1):79-84. PubMed ID: 11538236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of 7-hydroxy-2-oxoindolin-3-ylacetic acid and its [13C2], [5-n-3H], and [5-n-3H]-7-O-glucosyl analogues for use in the study of indol-3-ylacetic acid catabolism.
    Lewer P
    J Chem Soc Perkin 1; 1987 Apr; 1987(4):753-7. PubMed ID: 11540898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings.
    Momonoki YS
    Plant Physiol; 1988; 87(3):751-6. PubMed ID: 11537873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxindole-3-acetic Acid, an Indole-3-acetic Acid Catabolite in Zea mays.
    Reinecke DM; Bandurski RS
    Plant Physiol; 1983 Jan; 71(1):211-3. PubMed ID: 16662791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna.
    Zhao H; Hertel R; Ishikawa H; Evans ML
    Planta; 2002 Dec; 216(2):293-301. PubMed ID: 12447543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic conversion of 14C-indole-3-acetic acid to 14C-oxindole-3-acetic acid.
    Reinecke DM; Bandurski RS
    Biochem Biophys Res Commun; 1981 Nov; 103(2):429-33. PubMed ID: 7036993
    [No Abstract]   [Full Text] [Related]  

  • 14. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme.
    Leznicki AJ; Bandurski RS
    Plant Physiol; 1988; 88(4):1481-5. PubMed ID: 11537439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification of cortical parenchyma and stele of maize primary roots by asymmetric levels of auxin, cytokinin, and cytokinin-regulated proteins.
    Saleem M; Lamkemeyer T; Schützenmeister A; Madlung J; Sakai H; Piepho HP; Nordheim A; Hochholdinger F
    Plant Physiol; 2010 Jan; 152(1):4-18. PubMed ID: 19933382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays.
    Niu L; Wu Z; Liu H; Wu X; Wang W
    BMC Genomics; 2019 Oct; 20(1):758. PubMed ID: 31640549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue.
    Hall PJ; Bandurski RS
    Plant Physiol; 1986; 80(2):374-7. PubMed ID: 11539037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Deseeding on the Indole-3-acetic Acid Content of Shoots and Roots of Zea mays Seedlings.
    Momonoki YS; Schulze A; Bandurski RS
    Plant Physiol; 1983 Jun; 72(2):526-9. PubMed ID: 16663036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity.
    Schulze A; Jensen PJ; Desrosiers M; Buta JG; Bandurski RS
    Plant Physiol; 1992; 100(2):692-8. PubMed ID: 11537869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.