These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11541011)

  • 1. Influence of graviceptives cues at different level of visual information processing: the effect of prolonged weightlessness.
    Leone G; Lipshits M; Gurfinkel V; Berthoz A
    Acta Astronaut; 1995; 36(8-12):743-51. PubMed ID: 11541011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged weightlessness, reference frames and visual symmetry detection.
    Leone G; de Schonen S; Lipshits M
    Acta Astronaut; 1998; 42(1-8):281-6. PubMed ID: 11541612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independence of bilateral symmetry detection from a gravitational reference frame.
    Leone G; Lipshits M; McIntyre J; Gurfinkel V
    Spat Vis; 1995; 9(1):127-37. PubMed ID: 7626543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there an effect of weightlessness on mental rotation of three-dimensional objects?
    Leone G; Lipshits M; Gurfinkel V; Berthoz A
    Brain Res Cogn Brain Res; 1995 Oct; 2(4):255-67. PubMed ID: 8580739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal reference frames for representation and storage of visual information: the role of gravity.
    McIntyre J; Lipshits M; Zaoui M; Berthoz A; Gurfinkel V
    Acta Astronaut; 2001; 49(3-10):111-21. PubMed ID: 11669099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prolonged weightlessness on mental rotation of three-dimensional objects.
    Matsakis Y; Lipshits M; Gurfinkel V; Berthoz A
    Exp Brain Res; 1993; 94(1):152-62. PubMed ID: 8335070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does the centre of mass remain stable during complex human postural equilibrium tasks in weightlessness?
    Stapley P; Pozzo T
    Acta Astronaut; 1998; 43(3-6):163-79. PubMed ID: 11541922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomedical program of the ALTAIR french russian flight onboard the MIR station.
    Andre-Deshays C; Haignere JP; Guell A; Marsal O; Suchet L; Kotovskaya A; Gratchev V; Noskin A; Grigoriev A
    Acta Astronaut; 1995; 36(8-12):707-12. PubMed ID: 11541006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does gravity play an essential role in the asymmetrical visual perception of vertical and horizontal line length?
    Lipshits M; McIntyre J; Zaoui M; Gurfinkel V; Berthoz A
    Acta Astronaut; 2001; 49(3-10):123-30. PubMed ID: 11669100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial reference in weightlessness: perceptual factors and mental representations.
    Friederici AD; Levelt WJ
    Percept Psychophys; 1990 Mar; 47(3):253-66. PubMed ID: 2326148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two reference frames for visual perception in two gravity conditions.
    Lipshits M; Bengoetxea A; Cheron G; McIntyre J
    Perception; 2005; 34(5):545-55. PubMed ID: 15991691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The face inversion effect in microgravity: is gravity used as a spatial reference for complex object recognition?
    de Schonen S; Leone G; Lipshits M
    Acta Astronaut; 1998; 42(1-8):287-301. PubMed ID: 11541613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proprioceptive information processing in weightlessness.
    Roll R; Gilhodes JC; Roll JP; Popov K; Charade O; Gurfinkel V
    Exp Brain Res; 1998 Oct; 122(4):393-402. PubMed ID: 9827858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VISUAL EXPERIENCES OF THE ASTRONAUTS AND COSMONAUTS.
    ZINK DL
    Hum Factors; 1963 Jun; 5():187-201. PubMed ID: 14061920
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of gravity on human recognition of disoriented objects.
    Leone G
    Brain Res Brain Res Rev; 1998 Nov; 28(1-2):203-14. PubMed ID: 9795218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative role of visual and non-visual cues in determining the perceived direction of "up": experiments in parabolic flight.
    Jenkin HL; Dyde RT; Zacher JE; Zikovitz DC; Jenkin MR; Allison RS; Howard IP; Harris LR
    Acta Astronaut; 2005; 56(9-12):1025-32. PubMed ID: 15838949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Touch down: the effect of artificial touch cues on orientation in microgravity.
    van Erp JB; van Veen HA
    Neurosci Lett; 2006 Aug; 404(1-2):78-82. PubMed ID: 16806701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethological experiments on human orientation behavior within a three-dimensional space--in microgravity.
    Tafforin C; Campan R
    Adv Space Res; 1994; 14(8):415-8. PubMed ID: 11537950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.