These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 11541033)
1. Phototropism involves a lateral gradient of growth inhibitors, not of auxin. A review. Bruinsma J; Hasegawa K Environ Exp Bot; 1989 Jan; 29(1):25-36. PubMed ID: 11541033 [TBL] [Abstract][Full Text] [Related]
2. Chemistry and biology of phototropism-regulating substances in higher plants. Yamamura S; Hasegawa K Chem Rec; 2001; 1(5):362-72. PubMed ID: 11933243 [TBL] [Abstract][Full Text] [Related]
3. Repetition of the classical Boysen-Jensen and Nielsen's experiment on phototropism of oat coleoptiles. Yamada K; Nakano H; Yokotani-Tomita K; Bruinsma J; Yamamura S; Hasegawa K J Plant Physiol; 2000 Mar; 156(3):323-9. PubMed ID: 12090269 [TBL] [Abstract][Full Text] [Related]
4. Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Nick P; Bergfeld R; Schafer E; Schopfer P Planta; 1990 May; 181(2):162-8. PubMed ID: 11541053 [TBL] [Abstract][Full Text] [Related]
5. What remains of the Cholodny-Went theory? Lateral auxin translocation as a key step mediating light-gradient perception and phototropic differential growth. Iino M Plant Cell Environ; 1992 Sep; 15(7):773-4. PubMed ID: 11541807 [No Abstract] [Full Text] [Related]
6. Relationships between xanthoxin, phototropism, and elongation growth in the sunflower seedling Helianthus annuus L. Franssen JM; Bruinsma J Planta; 1981 Apr; 151(4):365-70. PubMed ID: 24301980 [TBL] [Abstract][Full Text] [Related]
7. The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Kurepin LV; Emery RJ; Pharis RP; Reid DM Plant Cell Environ; 2007 Feb; 30(2):147-55. PubMed ID: 17238906 [TBL] [Abstract][Full Text] [Related]
8. Gravitropism and phototropism of oat coleoptiles: post-tropic autostraightening and tissue shrinkage during tropism. Tarui Y; Iino M Adv Space Res; 1999; 24(6):743-53. PubMed ID: 11542618 [TBL] [Abstract][Full Text] [Related]
9. Phototropism in Hypocotyls of Radish : II. Role of cis- and trans-Raphanusanins, and Raphanusamide in Phototropism of Radish Hypocotyls. Noguchi H; Nishitani K; Bruinsma J; Hasegawa K Plant Physiol; 1986 Aug; 81(4):980-3. PubMed ID: 16664969 [TBL] [Abstract][Full Text] [Related]
10. Phototropic stimulation induces the conversion of glucosinolate to phototropism-regulating substances of radish hypocotyls. Hasegawa T; Yamada K; Kosemura S; Yamamura S; Hasegawa K Phytochemistry; 2000 Jun; 54(3):275-9. PubMed ID: 10870181 [TBL] [Abstract][Full Text] [Related]
11. NPH3- and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. Matsuda S; Kajizuka T; Kadota A; Nishimura T; Koshiba T J Exp Bot; 2011 Jun; 62(10):3459-66. PubMed ID: 21459767 [TBL] [Abstract][Full Text] [Related]
12. What remains of the Cholodny-Went theory? It's alive and well in maize. Briggs WR Plant Cell Environ; 1992 Sep; 15(7):763. PubMed ID: 11541802 [No Abstract] [Full Text] [Related]
13. Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model. Edelmann HG; Roth U Protoplasma; 2006 Dec; 229(2-4):183-91. PubMed ID: 17180500 [TBL] [Abstract][Full Text] [Related]
14. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Mukherjee S; David A; Yadav S; Baluška F; Bhatla SC Physiol Plant; 2014 Dec; 152(4):714-28. PubMed ID: 24799301 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric, blue light-dependent phosphorylation of a 116-kilodalton plasma membrane protein can be correlated with the first- and second-positive phototropic curvature of oat coleoptiles. Salomon M; Zacherl M; Rudiger W Plant Physiol; 1997 Oct; 115(2):485-91. PubMed ID: 11536817 [TBL] [Abstract][Full Text] [Related]
16. Phototropism in Hypocotyls of Radish : III. Influence of Unilateral or Bilateral Illumination of Various Light Intensities on Phototropism and Distribution of cis- and trans-Raphanusanins and Raphanusamide. Noguchi H; Hasegawa K Plant Physiol; 1987 Mar; 83(3):672-5. PubMed ID: 16665305 [TBL] [Abstract][Full Text] [Related]
17. Cell wall pH and auxin transport velocity. Hasenstein KH; Rayle D Plant Physiol; 1984 Sep; 76(1):65-7. PubMed ID: 11540807 [TBL] [Abstract][Full Text] [Related]
18. What remains of the Cholodny-Went theory? A potential role for changing sensitivity to auxin. Salisbury FB Plant Cell Environ; 1992 Sep; 15(7):785-6. PubMed ID: 11541813 [No Abstract] [Full Text] [Related]
19. Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Stone BB; Stowe-Evans EL; Harper RM; Celaya RB; Ljung K; Sandberg G; Liscum E Mol Plant; 2008 Jan; 1(1):129-44. PubMed ID: 20031920 [TBL] [Abstract][Full Text] [Related]
20. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Haga K; Takano M; Neumann R; Iino M Plant Cell; 2005 Jan; 17(1):103-15. PubMed ID: 15598797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]