These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11541111)

  • 1. Preparatory studies for the use of plant protoplasts in space research.
    Rasmussen O; Baggerud C; Iversen TH
    Physiol Plant; 1989 Jul; 76(3 Pt 1):431-7. PubMed ID: 11541111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of exposure to microgravity on the development and structural organisation of plant protoplasts flown on Biokosmos 9.
    Rasmussen O; Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Lozovaya VV; Tairbekov MG; Baggerud C; Iversen TH
    Physiol Plant; 1992 Jan; 84(1):162-70. PubMed ID: 11541143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of microgravity on the development of plant protoplasts flown on Biokosmos 9.
    Iversen T-H ; Rasmussen O; Gmünder F; Baggerud C; Kordyum EL; Lozovaya VV; Tairbekov M
    Adv Space Res; 1992; 12(1):123-31. PubMed ID: 11536947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparatory tests for immunodetection of microtubules in protoplasts during IML-2.
    Skagen EB; Rasmussen OS; Iversen TH
    Microgravity Q; 1994 Apr; 4(2):83-91. PubMed ID: 11541198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical microtubule reorganization in protoplasts isolated from Brassica napus hypocotyl is affected by gravity.
    Skagen EB
    J Gravit Physiol; 1998 Jul; 5(1):P117-20. PubMed ID: 11542315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional organisation of regenerated plant protoplasts exposed to microgravity on Biokosmos 9.
    Klimchuk DA; Kordyum EL; Danevich LA; Tarnavskaya EB; Tairbekov MG; Iversen TH; Baggerud C; Rasmussen O
    Adv Space Res; 1992; 12(1):133-40. PubMed ID: 11536948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of plant protoplasts during the IML-1 mission.
    Rasmussen O; Bondar RL; Baggerud C; Iversen T-H
    Adv Space Res; 1994; 14(8):189-96. PubMed ID: 11537917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of simulated and real weightlessness on early regeneration stages of Brassica napus protoplasts.
    Skagen EB; Iversen TH
    In Vitro Cell Dev Biol Plant; 2000; 36(5):312-8. PubMed ID: 11758568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypocotyl protoplast culture in Brassica napus L.
    Cheng Z; Wei Z; Xu Z
    Chin J Biotechnol; 1994; 10(1):43-8. PubMed ID: 7993971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated weightlessness and hyper-g results in opposite effects on the regeneration of the cortical microtubule array in protoplasts from Brassica napus hypocotyls.
    Skagen EB; Iversen TH
    Physiol Plant; 1999 Jul; 106(3):318-25. PubMed ID: 11542687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool.
    Briegleb W
    ASGSB Bull; 1992 Oct; 5(2):23-30. PubMed ID: 11537638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effectiveness of a clinostat and a slow-turning lateral vessel at mimicking the ultrastructural effects of microgravity in plant cells.
    Moore R
    Ann Bot; 1990; 66():541-9. PubMed ID: 11537663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats.
    Cai WM; Braun M; Sievers A
    Shi Yan Sheng Wu Xue Bao; 1997 Jun; 30(2):147-55. PubMed ID: 11536934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fast clinostat treatment and microgravity on Vicia faba L. mesophyll cell protoplast ubiquitin pools and actin isoforms.
    Schnabl H; Hunte C; Schulz M; Wolf D; Ghiena-Rahlenbeck C; Bramer M; Graab M; Janssen M; Kalweit H
    Microgravity Sci Technol; 1996; 9(4):275-80. PubMed ID: 11540169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of clinorotation on the polysaccharide content of resynthesized walls of protoplasts.
    Nedukha EM
    Adv Space Res; 1998; 21(8-9):1121-6. PubMed ID: 11541359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditioned culture for protoplasts isolated from chrysanthemum: an efficient approach.
    Zhou J; Wang B; Zhu L
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):113-9. PubMed ID: 16154327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular changes in wheat seedlings during orbital flight.
    Edwards BF; Gray SW
    Life Sci Space Res; 1971; 9():113-8. PubMed ID: 11942355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a quantitative method for determination of the optimal conditions for protoplast isolation from cultured plant cells.
    Aoyagi H
    Biotechnol Lett; 2006 Oct; 28(20):1687-94. PubMed ID: 16955360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weightlessness experiments on Biosatellite II.
    Edwards BF
    Life Sci Space Res; 1969; 7():84-92. PubMed ID: 11949691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and experimental investigations on the fast rotating clinostat.
    Ayed M; Pironneau O; Planel H; Gasset G; Richoilley G
    Microgravity Sci Technol; 1992 Jul; 5(2):98-102. PubMed ID: 11541481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.