These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11541241)

  • 1. Biological potential of extraterrestrial materials. 2. Microbial and plant responses to nutrients in the Murchison carbonaceous meteorite.
    Mautner MN; Conner AJ; Killham K; Deamer DW
    Icarus; 1997; 129():245-53. PubMed ID: 11541241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth--implications for space populations and panspermia.
    Mautner MN
    Astrobiology; 2002; 2(1):59-76. PubMed ID: 12449855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization.
    Mautner MN; Leonard RL; Deamer DW
    Planet Space Sci; 1995; 43(1-2):139-47. PubMed ID: 11538427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tripartite microbial reporter gene system for real-time assays of soil nutrient status.
    Standing D; Meharg AA; Killham K
    FEMS Microbiol Lett; 2003 Mar; 220(1):35-9. PubMed ID: 12644225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of aerobically-treated and untreated crop residue as a source of recycled nutrients in a recirculating hydroponic system.
    Mackowiak CL; Garland JL; Strayer RF; Finger BW; Wheeler RM
    Adv Space Res; 1996; 18(1-2):281-7. PubMed ID: 11538972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The micro-distribution of carbonaceous matter in the Murchison meteorite as investigated by Raman imaging.
    El Amri C; Maurel MC; Sagon G; Baron MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jul; 61(9):2049-56. PubMed ID: 15911391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The origin of organic matter in the Martian meteorite ALH84001.
    Becker L; Popp B; Rust T; Bada JL
    Earth Planet Sci Lett; 1999 Mar; 167(1-2):71-9. PubMed ID: 11542930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accretion and differentiation of carbon in the early Earth.
    Tingle TN
    Chem Geol; 1998 May; 147(1-2):3-10. PubMed ID: 11543125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of the hydrocarbon component of carbonaceous chondrites: the star-meteorite connection.
    Lee W; Wdowiak TJ
    Astrophys J; 1993 Nov; 417(1):L49-51. PubMed ID: 11539449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass.
    Garland JL; Cook KL; Johnson M; Sumner R; Fields N
    Adv Space Res; 1997; 20(10):1931-7. PubMed ID: 11542572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origin of organic matter in the Martian meteorite ALH84001.
    Becker L; Popp B; Rust T; Bada JL
    Adv Space Res; 1999; 24(4):477-88. PubMed ID: 11543335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of organic compounds in carbonaceous chondrites.
    Cronin JR
    Adv Space Res; 1989; 9(2):59-64. PubMed ID: 11537361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon isotope composition of individual amino acids in the Murchison meteorite.
    Engel MH; Macko SA; Silfer JA
    Nature; 1990 Nov; 348(6296):47-9. PubMed ID: 11536470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life on Earth can grow on extraterrestrial organic carbon.
    Waajen AC; Lima C; Goodacre R; Cockell CS
    Sci Rep; 2024 Feb; 14(1):3691. PubMed ID: 38355968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A search for C60 in carbonaceous chondrites.
    De Vries MS; Reihs K; Wendt HR; Golden WG; Hunziker HE; Fleming R; Peterson E; Chang S
    Geochim Cosmochim Acta; 1993; 57():933-8. PubMed ID: 11539455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new family of extraterrestrial amino acids in the Murchison meteorite.
    Koga T; Naraoka H
    Sci Rep; 2017 Apr; 7(1):636. PubMed ID: 28377577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
    Koch B; Worm J; Jensen LE; HĂžjberg O; Nybroe O
    Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics and formation of amino acids and hydroxy acids of the Murchison meteorite.
    Cronin JR; Cooper GW; Pizzarello S
    Adv Space Res; 1995 Mar; 15(3):91-7. PubMed ID: 11539265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acids of the Murchison meteorite. III. Seven carbon acyclic primary alpha-amino alkanoic acids.
    Cronin JR; Pizzarello S
    Geochim Cosmochim Acta; 1986; 50():2419-27. PubMed ID: 11542028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-racemic amino acids in the Murray and Murchison meteorites.
    Pizzarello S; Cronin JR
    Geochim Cosmochim Acta; 2000 Jan; 64(2):329-38. PubMed ID: 11543420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.