These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11541290)

  • 1. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes.
    Yu FP; McFeters GA
    J Microbiol Methods; 1994; 20():1-10. PubMed ID: 11541290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological responses of bacteria in biofilms to disinfection.
    Yu FP; McFeters GA
    Appl Environ Microbiol; 1994 Jul; 60(7):2462-6. PubMed ID: 8074525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A direct viable count method for the enumeration of attached bacteria and assessment of biofilm disinfection.
    Yu FP; Pyle BH; McFeters GA
    J Microbiol Methods; 1993 Apr; 17(3):167-80. PubMed ID: 11537721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent probes applied to physiological characterization of bacterial biofilms.
    Lisle JT; Stewart PS; McFeters GA
    Methods Enzymol; 1999; 310():166-78. PubMed ID: 10547791
    [No Abstract]   [Full Text] [Related]  

  • 5. Nonuniform spatial patterns of respiratory activity within biofilms during disinfection.
    Huang CT; Yu FP; McFeters GA; Stewart PS
    Appl Environ Microbiol; 1995 Jun; 61(6):2252-6. PubMed ID: 7793945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water.
    Schaule G; Flemming HC; Ridgway HF
    Appl Environ Microbiol; 1993 Nov; 59(11):3850-7. PubMed ID: 8285688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria.
    Rodriguez GG; Phipps D; Ishiguro K; Ridgway HF
    Appl Environ Microbiol; 1992 Jun; 58(6):1801-8. PubMed ID: 1622256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double staining (CTC-DAPI) for detection and enumeration of viable but non-culturable Campylobacter jejuni cells.
    Cappelier JM; Lazaro B; Rossero A; Fernandez-Astorga A; Federighi M
    Vet Res; 1997; 28(6):547-55. PubMed ID: 9428148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms.
    McFeters GA; Pyle BH; Lisle JT; Broadaway SC
    Symp Ser Soc Appl Microbiol; 1999; 85(28):193S-200S. PubMed ID: 11543584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of substrates and phosphate on INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride) and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli.
    Smith JJ; McFeters GA
    J Appl Bacteriol; 1996 Feb; 80(2):209-15. PubMed ID: 8642015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC.
    López-Amorós R; Castel S; Comas-Riu J; Vives-Rego J
    Cytometry; 1997 Dec; 29(4):298-305. PubMed ID: 9415412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of metabolic potential of biofilm-associated bacteria.
    Manz W; Wagner M; Kalmbach S
    Methods Enzymol; 2001; 336():265-76. PubMed ID: 11398404
    [No Abstract]   [Full Text] [Related]  

  • 13. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction in a mesophilic anaerobic digester: measuring redox behavior, differentiating abiotic reduction, and comparing FISH response as an activity indicator.
    Gruden CL; Fevig S; Abu-Dalo M; Hernandez M
    J Microbiol Methods; 2003 Jan; 52(1):59-68. PubMed ID: 12401227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the fluorescent redox dye 5-cyano-2,3-ditolyltetrazolium chloride with p-iodonitrotetrazolium violet to detect metabolic activity in heat-stressed Listeria monocytogenes cells.
    Bovill RA; Shallcross JA; Mackey BM
    J Appl Bacteriol; 1994 Oct; 77(4):353-8. PubMed ID: 7989262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria.
    Bhupathiraju VK; Hernandez M; Landfear D; Alvarez-Cohen L
    J Microbiol Methods; 1999 Sep; 37(3):231-43. PubMed ID: 10480267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a fluorescent redox dye for enumeration of metabolically active bacteria on albumin-coated titanium surfaces.
    McDowell SG; An YH; Draughn RA; Friedman RJ
    Lett Appl Microbiol; 1995 Jul; 21(1):1-4. PubMed ID: 7544985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new direct microscopy based method for evaluating in-situ bioremediation.
    Bhupathiraju VK; Hernandez M; Krauter P; Alvarez-Cohen L
    J Hazard Mater; 1999 Jun; 67(3):299-312. PubMed ID: 10370182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of multiple indices of physiological activity to access viability in chlorine disinfected Escherichia coli O157:H7.
    Lisle JT; Pyle BH; McFeters GA
    Lett Appl Microbiol; 1999 Jul; 29(1):42-7. PubMed ID: 10432631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the Malthus conductance growth analyser to determine numbers of thermophilic streptococci on stainless steel.
    Flint SH; Brooks JD; Bremer PJ
    J Appl Microbiol; 1997 Sep; 83(3):335-9. PubMed ID: 9351213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene.
    Weaver L; Michels HT; Keevil CW
    J Hosp Infect; 2008 Feb; 68(2):145-51. PubMed ID: 18207284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.