These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11541328)

  • 1. The sticking probability of a hydrogen atom on icy mantle.
    Masuda K; Takahashi J
    Adv Space Res; 1997; 19(7):1019-22. PubMed ID: 11541328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formation of a permanent dust mantle and its effect on cometary activity.
    Prialnik D; Bar-Nun A
    Icarus; 1988; 74():272-83. PubMed ID: 11538225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical reactions on interstellar icy dust grains: Experimental investigations of elementary processes.
    Tsuge M; Watanabe N
    Proc Jpn Acad Ser B Phys Biol Sci; 2023; 99(4):103-130. PubMed ID: 37121737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and dynamics of amorphous water ice.
    Laufer D; Kochavi E; Bar-Nun A
    Phys Rev B Condens Matter; 1987 Dec; 36(17):9219-27. PubMed ID: 9942788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo studies of surface chemistry and nonthermal desorption involving interstellar grains.
    Herbst E; Cuppen HM
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12257-62. PubMed ID: 16894170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of Hydronium Ion (H
    Martinez R; Agnihotri AN; Boduch P; Domaracka A; Fulvio D; Muniz G; Palumbo ME; Rothard H; Strazzulla G
    J Phys Chem A; 2019 Sep; 123(37):8001-8008. PubMed ID: 31436998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
    Accolla M; Congiu E; Dulieu F; Manicò G; Chaabouni H; Matar E; Mokrane H; Lemaire JL; Pirronello V
    Phys Chem Chem Phys; 2011 May; 13(17):8037-45. PubMed ID: 21445409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sticking of CO to crystalline and amorphous ice surfaces.
    Al-Halabi A; van Dishoeck EF; Kroes GJ
    J Chem Phys; 2004 Feb; 120(7):3358-67. PubMed ID: 15268490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water formation at low temperatures by surface O2 hydrogenation III: Monte Carlo simulation.
    Lamberts T; Cuppen HM; Ioppolo S; Linnartz H
    Phys Chem Chem Phys; 2013 Jun; 15(21):8287-302. PubMed ID: 23615955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal evolution of Comet P/Tempel 1--representing the group of targets for the CRAF and CNSR missions.
    Bar-Nun A; Heifetz E; Prialnik D
    Icarus; 1989; 79():116-24. PubMed ID: 11542161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas temperature dependent sticking of hydrogen on cold amorphous water ice surfaces of interstellar interest.
    Matar E; Bergeron H; Dulieu F; Chaabouni H; Accolla M; Lemaire JL
    J Chem Phys; 2010 Sep; 133(10):104507. PubMed ID: 20849178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into H2 formation in space from ab initio molecular dynamics.
    Casolo S; Tantardini GF; Martinazzo R
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6674-7. PubMed ID: 23572584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the structure of cometary ice.
    Wilson MA; Pohorille A; Jenniskens P; Blake DF
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):3-19. PubMed ID: 11536679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of atomic and molecular deuterium with a nonporous amorphous water ice surface between 8 and 30 K.
    Amiaud L; Dulieu F; Fillion JH; Momeni A; Lemaire JL
    J Chem Phys; 2007 Oct; 127(14):144709. PubMed ID: 17935425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices.
    Andersson S; Al-Halabi A; Kroes GJ; van Dishoeck EF
    J Chem Phys; 2006 Feb; 124(6):64715. PubMed ID: 16483237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An embedded cluster study of the formation of water on interstellar dust grains.
    Goumans TP; Catlow CR; Brown WA; Kästner J; Sherwood P
    Phys Chem Chem Phys; 2009 Jul; 11(26):5431-6. PubMed ID: 19551212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of surface morphology in interstellar H2 formation.
    Hornekaer L; Baurichter A; Petrunin VV; Field D; Luntz AC
    Science; 2003 Dec; 302(5652):1943-6. PubMed ID: 14671297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation effects in water ice: a near-edge x-ray absorption fine structure study.
    Laffon C; Lacombe S; Bournel F; Parent P
    J Chem Phys; 2006 Nov; 125(20):204714. PubMed ID: 17144730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K.
    Crouse J; Loock HP; Cann NM
    J Chem Phys; 2015 Jul; 143(3):034502. PubMed ID: 26203031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.