These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11541328)

  • 41. Dewetting growth of crystalline water ice on a hydrogen saturated Rh(111) surface at 135 K.
    Beniya A; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2011 Aug; 135(5):054702. PubMed ID: 21823721
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Trapping of gases by water ice and implications for icy bodies.
    Bar-Nun A; Prialnik D; Laufer D; Kochavi E
    Adv Space Res; 1987; 7(5):45-7. PubMed ID: 11538219
    [TBL] [Abstract][Full Text] [Related]  

  • 43. H(D) → D(H) + Cu(111) collision system: molecular dynamics study of surface temperature effects.
    Vurdu CD; Güvenç ZB
    J Chem Phys; 2011 Apr; 134(16):164306. PubMed ID: 21528959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trapping of gas mixtures by amorphous water ice.
    Bar-Nun A; Kleinfeld I; Kochavi E
    Phys Rev B Condens Matter; 1988 Oct; 38(11):7749-54. PubMed ID: 9945502
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On laboratory simulation and the effect of small temperature oscillations about the freezing point and ice formation on the evaporation rate of water on Mars.
    Moore SR; Sears DW
    Astrobiology; 2006 Aug; 6(4):644-50. PubMed ID: 16916288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the phase diagram of water with density functional theory potentials: The melting temperature of ice I(h) with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals.
    Yoo S; Zeng XC; Xantheas SS
    J Chem Phys; 2009 Jun; 130(22):221102. PubMed ID: 19530755
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computer simulation investigation of the adsorption of acetamide on low density amorphous ice. An astrochemical perspective.
    Balbisi M; Horváth RA; Szőri M; Jedlovszky P
    J Chem Phys; 2022 May; 156(18):184703. PubMed ID: 35568547
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study of the sticking of a hydrogen atom on a graphite surface using a mixed classical-quantum dynamics method.
    Morisset S; Ferro Y; Allouche A
    J Chem Phys; 2010 Jul; 133(4):044508. PubMed ID: 20687664
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrogen atom formation from the photodissociation of water ice at 193 nm.
    Yabushita A; Hashikawa Y; Ikeda A; Kawasaki M; Tachikawa H
    J Chem Phys; 2004 Mar; 120(11):5463-8. PubMed ID: 15267420
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the Debye-Waller factor of hexagonal ice: a computer simulation study.
    Tanaka H; Mohanty U
    J Am Chem Soc; 2002 Jul; 124(27):8085-9. PubMed ID: 12095352
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water formation at low temperatures by surface O2 hydrogenation I: Characterization of ice penetration.
    Ioppolo S; Cuppen HM; Romanzin C; van Dishoeck EF; Linnartz H
    Phys Chem Chem Phys; 2010 Oct; 12(38):12065-76. PubMed ID: 20697614
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantum dynamic of sticking of a H atom on a graphite surface.
    Morisset S; Allouche A
    J Chem Phys; 2008 Jul; 129(2):024509. PubMed ID: 18624540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vacuum ultraviolet photodissociation and surface morphology change of water ice films dosed with hydrogen chloride.
    Yabushita A; Kanda D; Kawanaka N; Kawasaki M
    J Chem Phys; 2007 Oct; 127(15):154721. PubMed ID: 17949205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temperature, composition, and hydrogen isotope effect in the hydrogenation of CO on amorphous ice surface at 10-20 K.
    Hidaka H; Kouchi A; Watanabe N
    J Chem Phys; 2007 May; 126(20):204707. PubMed ID: 17552789
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. IR spectroscopic testing of surfaces in water ice and in icy mixtures with prussic acid or ammonia.
    Rudakova AV; Sekushin VN; Marinov IL; Tsyganenko AA
    Langmuir; 2009 Feb; 25(3):1482-7. PubMed ID: 19117474
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of glycosylation on hydration behavior at the ice-binding surface of the Ocean Pout type III antifreeze protein: a molecular dynamics simulation.
    Halder S; Mukhopadhyay C
    J Biomol Struct Dyn; 2017 Dec; 35(16):3591-3604. PubMed ID: 27882844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space.
    Clements AR; Berk B; Cooke IR; Garrod RT
    Phys Chem Chem Phys; 2018 Feb; 20(8):5553-5568. PubMed ID: 29387847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption.
    Janke SM; Auerbach DJ; Wodtke AM; Kandratsenka A
    J Chem Phys; 2015 Sep; 143(12):124708. PubMed ID: 26429033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.