These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11541365)

  • 1. Skeletogenesis in sea urchin larvae under modified gravity conditions.
    Marthy HJ; Gasset G; Tixador R; Eche B; Schatt P; Dessommes A; Marthy U; Bacchieri R
    Adv Space Res; 1998; 21(8-9):1151-4. PubMed ID: 11541365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sea urchin larva, a suitable model for biomineralisation studies in space (IML-2 ESA Biorack experiment '24-F urchin').
    Marthy HJ; Gasset G; Tixador R; Schatt P; Eche B; Dessommes A; Giacomini T; Tap G; Gorand D
    J Biotechnol; 1996 Jun; 47(2-3):167-77. PubMed ID: 11536758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fertilization of sea urchin eggs in space and subsequent development under normal conditions.
    Marthy HJ; Schatt P; Santella L
    Adv Space Res; 1994; 14(8):197-208. PubMed ID: 11537918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microgravity effects on sea urchin fertilization and development.
    Steffen S; Fiser R; Simerly C; Schatten H; Schatten G
    Adv Space Res; 1992; 12(1):167-73. PubMed ID: 11536954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of gravity-sensing organs in altered gravity.
    Wiederhold ML; Gao WY; Harrison JL; Hejl R
    Gravit Space Biol Bull; 1997 Jun; 10(2):91-6. PubMed ID: 11540125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue.
    Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S
    J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae.
    Yajima M
    Dev Biol; 2007 Jul; 307(2):272-81. PubMed ID: 17540361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of spaceflight conditions on fertilization and embryogenesis in the sea urchin Lytechinus pictus.
    Schatten H; Chakrabarti A; Taylor M; Sommer L; Levine H; Anderson K; Runco M; Kemp R
    Cell Biol Int; 1999; 23(6):407-15. PubMed ID: 10623420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of the aquatic research facility and fertilization syringe unit to study sea urchin development in space.
    Schatten H; Chakrabarti A; Levine HG; Anderson K
    J Gravit Physiol; 1999 Oct; 6(2):43-53. PubMed ID: 11543085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic development of the freshwater snail Biomphalaria glabrata under microgravity conditions (STS-89 mission).
    Marxen JC; Reelsen O; Becker W
    J Gravit Physiol; 2001 Dec; 8(2):29-36. PubMed ID: 12365448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature on the embryonic and early larval development in tropical species of black sea urchin, Diadema setosum (Leske, 1778).
    Sarifudin M; Rahman MA; Yusoff FM; Arshad A; Tan SG
    J Environ Biol; 2016 Jul; 37(4 Spec No):657-68. PubMed ID: 28779724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PI3K inhibitors block skeletogenesis but not patterning in sea urchin embryos.
    Bradham CA; Miranda EL; McClay DR
    Dev Dyn; 2004 Apr; 229(4):713-21. PubMed ID: 15042695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonic anhydrase inhibition blocks skeletogenesis and echinochrome production in Paracentrotus lividus and Heliocidaris tuberculata embryos and larvae.
    Zito F; Koop D; Byrne M; Matranga V
    Dev Growth Differ; 2015 Sep; 57(7):507-14. PubMed ID: 26108341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of larval and adult skeletogenic cells in developing sea urchin larvae.
    Yajima M; Kiyomoto M
    Biol Bull; 2006 Oct; 211(2):183-92. PubMed ID: 17062877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Juvenile skeletogenesis in anciently diverged sea urchin clades.
    Gao F; Thompson JR; Petsios E; Erkenbrack E; Moats RA; Bottjer DJ; Davidson EH
    Dev Biol; 2015 Apr; 400(1):148-58. PubMed ID: 25641694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification.
    Stumpp M; Hu MY; Melzner F; Gutowska MA; Dorey N; Himmerkus N; Holtmann WC; Dupont ST; Thorndyke MC; Bleich M
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):18192-7. PubMed ID: 23077257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental biology on unmanned space craft.
    Ubbels GA
    Adv Space Res; 1992; 12(1):117-22. PubMed ID: 11536946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The centriole-centrosome complex is affected by microgravity during cell division and in cilia of sea urchin embryos: results from space flight experiments.
    Schatten H; Chakrabarti A; Taylor M; Crosser M; Mitchell K
    Microsc Microanal; 1998; 4 Suppl 2():1132-3. PubMed ID: 12143890
    [No Abstract]   [Full Text] [Related]  

  • 20. Heterochronic activation of VEGF signaling and the evolution of the skeleton in echinoderm pluteus larvae.
    Morino Y; Koga H; Tachibana K; Shoguchi E; Kiyomoto M; Wada H
    Evol Dev; 2012; 14(5):428-36. PubMed ID: 22947316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.