These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11541375)

  • 21. The influence of space flight factors on viability and mutability of plants.
    Kostina L; Anikeeva I; Vaulina E
    Adv Space Res; 1984; 4(10):65-70. PubMed ID: 11539645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gravitational force regulates elongation growth of Arabidopsis hypocotyls by modifying xyloglucan metabolism.
    Soga K; Wakabayashi K; Hoson T; Kamisaka S
    Adv Space Res; 2001; 27(5):1011-6. PubMed ID: 11596631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.
    Link BM; Busse JS; Stankovic B
    Astrobiology; 2014 Oct; 14(10):866-75. PubMed ID: 25317938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plastid distribution in columella cells of a starchless Arabidopsis mutant grown in microgravity.
    Hilaire E; Paulsen AQ; Brown CS; Guikema JA
    Plant Cell Physiol; 1997 Apr; 38(4):490-4. PubMed ID: 9177036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seedling growth and development on space shuttle.
    Cowles J; LeMay R; Jahns G
    Adv Space Res; 1994 Nov; 14(11):3-12. PubMed ID: 11540197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth stimulation in inflorescences of an Arabidopsis tubulin mutant under microgravity conditions in space.
    Hoson T; Soga K; Wakabayashi K; Hashimoto T; Karahara I; Yano S; Tanigaki F; Shimazu T; Kasahara H; Masuda D; Kamisaka S
    Plant Biol (Stuttg); 2014 Jan; 16 Suppl 1():91-6. PubMed ID: 24148142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes.
    Correll MJ; Pyle TP; Millar KD; Sun Y; Yao J; Edelmann RE; Kiss JZ
    Planta; 2013 Sep; 238(3):519-33. PubMed ID: 23771594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Usefulness of the Centrifuge Accommodation Module for analyzing gravity responses in plant seedlings].
    Hoson T
    Biol Sci Space; 2001 Oct; 15(3):154-6. PubMed ID: 11997591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions.
    Kuang A; Xiao Y; Musgrave ME
    Ann Bot; 1996; 78():343-51. PubMed ID: 11540608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures.
    Martzivanou M; Babbick M; Cogoli-Greuter M; Hampp R
    Protoplasma; 2006 Dec; 229(2-4):155-62. PubMed ID: 17180497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ground based studies of gene expression in Arabidopsis exposed to gravity stresses.
    Kittang AI; van Loon JJ; Vorst O; Hall RD; Fossum K; Iversen TH
    J Gravit Physiol; 2004 Jul; 11(2):P223-4. PubMed ID: 16240520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Growth and lignification in seedlings exposed to eight days of microgravity.
    Cowles JR; Scheld HW; Lemay R; Peterson C
    Ann Bot; 1984; 54(Suppl 3):33-48. PubMed ID: 11539752
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biological clock of Neurospora in a microgravity environment.
    Ferraro JS; Fuller CA; Sulzman FM
    Adv Space Res; 1989; 9(11):251-60. PubMed ID: 11537340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the Mechanisms of Gravity Resistance in Plants.
    Soga K; Yano S; Kamada M; Matsumoto S; Hoson T
    Methods Mol Biol; 2022; 2368():267-279. PubMed ID: 34647261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. "From seed-to-seed" experiment with wheat plants under space-flight conditions.
    Mashinsky A; Ivanova I; Derendyaeva T; Nechitailo G; Salisbury F
    Adv Space Res; 1994 Nov; 14(11):13-9. PubMed ID: 11540174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spaceflight hardware allowing unilateral irradiation and chemical fixation in petri dishes.
    Kern VD; Sack FD; White NJ; Anderson K; Wells W; Martin C
    Adv Space Res; 1999; 24(6):775-8. PubMed ID: 11542622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of microgravity and hypergravity on embryo axis alignment during postencystment embryogenesis in Artemia franciscana (Anostraca).
    Rosowski JR; Gouthro MA; Schmidt KK; Klement BJ; Spooner BS
    J Crustac Biol; 1995 Nov; 15(4):625-32. PubMed ID: 11539283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight.
    Zupanska AK; Schultz ER; Yao J; Sng NJ; Zhou M; Callaham JB; Ferl RJ; Paul AL
    Astrobiology; 2017 Nov; 17(11):1077-1111. PubMed ID: 29088549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant molecular biology in the space station era: utilization of KSC fixation tubes with RNAlater.
    Paul AL; Levine HG; McLamb W; Norwood KL; Reed D; Stutte GW; Wells HW; Ferl RJ
    Acta Astronaut; 2005 Mar; 56(6):623-8. PubMed ID: 15736319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.