BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11541408)

  • 1. Ultrastructural aspects of otoliths and sensory epithelia of fish inner ear exposed to hypergravity.
    Ibsch M; Nindl G; Anken RH; Kortje KH; Rahmann H
    Adv Space Res; 1998; 22(2):287-91. PubMed ID: 11541408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The asymmetrical growth of otoliths in fish is affected by hypergravity.
    Anken RH; Kappel T; Rahmann H
    Acta Astronaut; 1999 Aug; 45(3):167-70. PubMed ID: 11542805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hypergravity on fish inner ear otoliths: I. Developmental growth profile.
    Anken RH; Beier M; Rahmann H
    Adv Space Res; 2002; 30(4):721-5. PubMed ID: 12528670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the influence of altered gravity on the growth of fish inner ear otoliths.
    Beier M
    Acta Astronaut; 1999; 44(7-12):585-91. PubMed ID: 11542523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular bodies in fish maculae are artifacts not contributing to otolith growth.
    Ibsch M; Anken RH; Vöhringer P; Rahmann H
    Hear Res; 2001 Mar; 153(1-2):80-90. PubMed ID: 11223298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometry of fish inner ear otoliths after development at 3g hypergravity.
    Anken RH; Kappel T; Rahmann H
    Acta Otolaryngol; 1998 Jul; 118(4):534-9. PubMed ID: 9726679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fish otolith growth in 1g and 3g depends on the gravity vector.
    Anken RH; Werner K; Breuer J; Rahmann H
    Adv Space Res; 2000; 25(10):2025-9. PubMed ID: 11542852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronmicroscopic investigations on the role of vesicle-like bodies in inner ear maculae for fish otolith growth.
    Ibsch M; Vohringer P; Anken RH; Rahmann H
    Adv Space Res; 2000; 25(10):2031-4. PubMed ID: 11542853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hypergravity on the Ca/Sr composition of developing otoliths of larval cichlid fish (Oreochromis mossambicus).
    Anken RH; Ibsch M; Breuer J; Rahmann H
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Feb; 128(2):369-77. PubMed ID: 11223398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Otoliths developed in microgravity.
    Wiederhold ML; Harrison JL; Parker K; Nomura H
    J Gravit Physiol; 2000 Jul; 7(2):P39-42. PubMed ID: 12697538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium gradients in the fish inner ear sensory epithelium and otolithic membrane visualized by energy filtering transmission electron microscopy (EFTEM).
    Ibsch M; Anken RH; Rahmann H
    Adv Space Res; 2004; 33(8):1395-400. PubMed ID: 15803635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of hypergravity on fish inner ear otoliths: II. Incorporation of calcium and kinetotic behaviour.
    Beier M; Anken RH; Rahmann H
    Adv Space Res; 2002; 30(4):727-31. PubMed ID: 12528672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inner ear morphology in the Atlantic molly Poecilia mexicana--first detailed microanatomical study of the inner ear of a cyprinodontiform species.
    Schulz-Mirbach T; Hess M; Plath M
    PLoS One; 2011; 6(11):e27734. PubMed ID: 22110746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal feedback between brain and inner ear for growth of otoliths in fish.
    Anken RH; Edelmann E; Rahmann H
    Adv Space Res; 2002; 30(4):829-33. PubMed ID: 12530397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Normal and altered otoliths of guinea pigs. Scanning electron microscopy observations.
    Serra A; La Mantia I
    Arch Otorhinolaryngol; 1983 Apr; 237(3):209-14. PubMed ID: 6870654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and microchemistry of the otoliths of the inner ear of anuran larvae.
    Bassó A; Peltzer PM; Lajmanovich RC; Attademo AM; Junges CM; Chialvo DR
    Hear Res; 2016 May; 335():47-52. PubMed ID: 26899343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of the otolithic membrane by low-vacuum scanning electron microscopy.
    Nakai Y; Masutani H; Kato A; Sugiyama T
    ORL J Otorhinolaryngol Relat Spec; 1996; 58(1):9-12. PubMed ID: 8718531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Surface structure of the otolithic organs of the tadpole of the clawed toad Xenopus laevis].
    Lychakov DV
    Zh Evol Biokhim Fiziol; 1984; 20(4):391-7. PubMed ID: 6485654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of gravity in the phylogeny of structure and function in animal sensors of spatial orientation, and their predicted action in weightlessness.
    Vinnikov YA; Gazenko OG; Titova LK; Bronstein AA; Tsirulis TP; Pevzner RA; Govardovskii VI; Gribakin FG; Pal'mbakh LP; Aronova MZ; Mashinskii AL; Ivanov VP; Kharkeevich TA; Pyatkina GA
    Life Sci Space Res; 1974; 12():159-76. PubMed ID: 11911144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function-morphological investigations of fish inner ear otoliths as basis for interpretation of human space sickness.
    Edelmann E
    Acta Astronaut; 2002 Feb; 50(4):261-6. PubMed ID: 11829019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.