These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11541443)

  • 1. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience.
    Ferguson F; Lilleleht LU; Nuth J; Stephens JR; Bussoletti E; Colangeli L; Mennella V; Dell'Aversana P; Mirra C
    Microgravity Q; 1993; 3(2-4):97-100. PubMed ID: 11541443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosmic dust analog simulation in a microgravity environment: the STARDUST program.
    Ferguson F; Lilleleht LU; Nuth J; Stephens JR; Bussoletti E; Carotenuto L; Colangeli L; Dell'Aversana P; Mele F; Mennella V; Mirra C
    Adv Space Res; 1995 Mar; 15(3):423-6. PubMed ID: 11539256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microgravity particle research on the space station: the Gas-Grain Simulation Facility.
    Fogleman G; Huntington JL; Carle GC; Nuth JA
    Adv Space Res; 1989; 9(2):91-4. PubMed ID: 11537363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Space Station gas-grain simulation facility: application to exobiology.
    McKay CP; Stoker CR; Morris J; Conley G; Schwartz D
    Adv Space Res; 1986; 6(12):195-206. PubMed ID: 11537821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and preparation of a particle dynamics space flight experiment, SHIVA.
    Trolinger JD; L'Esperance D; Rangel RH; Coimbra CF; Witherow WK
    Ann N Y Acad Sci; 2004 Nov; 1027():550-66. PubMed ID: 15644380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biological effects of weightlessness at the cellular level. Comparative study of cultures of Paramecia aboard the orbital station Salyut-6 and a stratospheric balloon].
    Richoilley G; Templier J; Bes JC; Gasset G; Planel H; Tixador R
    C R Acad Sci III; 1984; 299(20):845-8. PubMed ID: 6441618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulating the formation of cosmic structure.
    Frenk CS
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1277-94. PubMed ID: 12804279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of carbonates in dust shells around evolved stars.
    Kemper F; Jäger C; Waters LB; Henning T; Molster FJ; Barlow MJ; Lim T; de Koter A
    Nature; 2002 Jan; 415(6869):295-7. PubMed ID: 11797000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a blood chemistry analyzer during parabolic flight.
    Spooner BS; Claassen DE; Guikema JA
    Space Technol; 1990; 10(3):135-8. PubMed ID: 11538189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Astronomical observations with the FAUST telescope.
    Bixler J; Bowyer S; Deharveng JM; Courtes G; Malina R; Martin C; Lampton M
    Science; 1984 Jul; 225():184-5. PubMed ID: 11540797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat and gas exchanges between plants and atmosphere under microgravity conditions.
    Kitaya Y; Kawai M; Takahashi H; Tani A; Goto E; Saito T; Shibuya T; Kiyota M
    Ann N Y Acad Sci; 2006 Sep; 1077():244-55. PubMed ID: 17124128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody binding in altered gravity: implications for immunosorbent assay during space flight.
    Maule J; Fogel M; Steele A; Wainwright N; Pierson DL; McKay DS
    J Gravit Physiol; 2003 Dec; 10(2):47-55. PubMed ID: 15838989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-temperature crystallization of silicate dust in circumstellar disks.
    Molster FJ; Yamamura I; Waters LB; Tielens AG; de Graauw T; de Jong T; de Koter A; Malfait K; van den Ancker ME; van Winckel H; Voors RH; Waelkens C
    Nature; 1999 Oct; 401(6753):563-5. PubMed ID: 10524623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NASA Spitzer Space Telescope.
    Gehrz RD; Roellig TL; Werner MW; Fazio GG; Houck JR; Low FJ; Rieke GH; Soifer BT; Levine DA; Romana EA
    Rev Sci Instrum; 2007 Jan; 78(1):011302. PubMed ID: 17503900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESA's participation in the International Microgravity Laboratory (IML-2) mission.
    Walter HU
    ESA Bull; 1995 Feb; 81():5 p.. PubMed ID: 14971369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space radiation research in the new millenium--from where we come and where we go.
    Kiefer J
    Phys Med; 2001; 17 Suppl 1():1-4. PubMed ID: 11770520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone cell survival in microgravity: evidence that modeled microgravity increases osteoblast sensitivity to apoptogens.
    Bucaro MA; Fertala J; Adams CS; Steinbeck M; Ayyaswamy P; Mukundakrishnan K; Shapiro IM; Risbud MV
    Ann N Y Acad Sci; 2004 Nov; 1027():64-73. PubMed ID: 15644346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assignment of quinone derivatives as the main compound class composing 'interstellar' grains based on both polarity ions detected by the 'Cometary and Interstellar Dust Analyser' (CIDA) onboard the spacecraft STARDUST.
    Krueger FR; Werther W; Kissel J; Schmid ER
    Rapid Commun Mass Spectrom; 2004; 18(1):103-11. PubMed ID: 14689566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microgravity environment for experiments on the International Space Station.
    Nelson ES; Jules K
    J Gravit Physiol; 2004 Mar; 11(1):1-10. PubMed ID: 16145793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discontinuous pore fluid distribution under microgravity--KC-135 flight investigations.
    Reddi LN; Xiao M; Steinberg SL
    Soil Sci Soc Am J; 2005; 69(3):593-8. PubMed ID: 16052743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.