These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11541444)

  • 1. Spaceflight reduces somatic embryogenesis in orchardgrass (Poaceae).
    Conger BV; Tomaszewski Z; McDaniel JK; Vasilenko A
    Plant Cell Environ; 1998 Nov; 21(11):1197-203. PubMed ID: 11541444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural analyses of somatic embryo initiation, development and polarity establishment from mesophyll cells of Dactylis glomerata.
    Vasilenko A; McDaniel JK; Conger BV
    In Vitro Cell Dev Biol Plant; 2000; 36(1):51-6. PubMed ID: 11681324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of low temperature preincubation on somatic embryogenesis and ethylene emanation from orchardgrass leaves.
    Tomaszewski Z; Kuklin AI; Sams CE; Conger BV
    Plant Growth Regul; 1994; 14():229-34. PubMed ID: 11537966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollination and embryo development in Brassica rapa L. in microgravity.
    Kuang A; Popova A; Xiao Y; Musgrave ME
    Int J Plant Sci; 2000 Mar; 161(2):203-11. PubMed ID: 10777443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity.
    Kuang A; Popova A; McClure G; Musgrave ME
    Int J Plant Sci; 2005 Jan; 166(1):85-96. PubMed ID: 15747444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of root zone hypoxia in Brassica rapa L. grown in microgravity.
    Stout SC; Porterfield DM; Briarty LG; Kuang A; Musgrave ME
    Int J Plant Sci; 2001 Mar; 162(2):249-55. PubMed ID: 11725801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant reproduction during spaceflight: importance of the gaseous environment.
    Musgrave ME; Kuang A; Matthews SW
    Planta; 1997; 203 Suppl():S177-84. PubMed ID: 9299797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions.
    Kuang A; Xiao Y; Musgrave ME
    Ann Bot; 1996; 78():343-51. PubMed ID: 11540608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seedborne fungal contamination: consequences in space-grown wheat.
    Bishop DL; Levine HG; Kropp BR; Anderson AJ
    Phytopathology; 1997 Nov; 87(11):1125-33. PubMed ID: 11540734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of reproductive development in Arabidopsis thaliana under spaceflight conditions.
    Kuang A; Musgrave ME; Matthews SW
    Planta; 1996 Apr; 198(4):588-94. PubMed ID: 11539321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravity independence of seed-to-seed cycling in Brassica rapa.
    Musgrave ME; Kuang A; Xiao Y; Stout SC; Bingham GE; Briarty LG; Levenskikh MA; Sychev VN; Podolski IG
    Planta; 2000 Feb; 210(3):400-6. PubMed ID: 10750897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Embryogenesis, hatching and larval development of Artemia during orbital spaceflight.
    Spooner BS; DeBell L; Armbrust L; Guikema JA; Metcalf J; Paulsen A
    Adv Space Res; 1994; 14(8):229-38. PubMed ID: 11537922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germination and elongation of flax in microgravity.
    Levine HG; Anderson K; Boody A; Cox D; Kuznetsov OA; Hasenstein KH
    Adv Space Res; 2003; 31(10):2261-8. PubMed ID: 14686441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth in microgravity increases susceptibility of soybean to a fungal pathogen.
    Ryba-White M; Nedukha O; Hilaire E; Guikema JA; Kordyum E; Leach JE
    Plant Cell Physiol; 2001 Jun; 42(6):657-64. PubMed ID: 11427686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiobiological studies of plants orbited in Biosatellite II.
    Schairer LA; Sparrow AH; Marimuthu KM
    Life Sci Space Res; 1970; 8():19-24. PubMed ID: 11822416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of body fluid volume and electrolyte concentrations in spaceflight.
    Smith SM; Krauhs JM; Leach CS
    Adv Space Biol Med; 1997; 6():123-65. PubMed ID: 9048137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and lignification in seedlings exposed to eight days of microgravity.
    Cowles JR; Scheld HW; Lemay R; Peterson C
    Ann Bot; 1984; 54(Suppl 3):33-48. PubMed ID: 11539752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chromosome aberration of pollen mother cell of broccoli (Brassica oleralea var. Italica) induced by space flight].
    Li JG; Wang PS; Zhang J; Wang XQ; Jiang XC
    Space Med Med Eng (Beijing); 1999 Aug; 12(4):245-8. PubMed ID: 11542703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A test to verify the biocompatibility of a method for plant culture in a microgravity environment.
    Brown AH; Chapman DK
    Ann Bot; 1984 Nov; 54(Suppl 3):19-31. PubMed ID: 11538821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight.
    Kern VD; Schwuchow JM; Reed DW; Nadeau JA; Lucas J; Skripnikov A; Sack FD
    Planta; 2005 Apr; 221(1):149-57. PubMed ID: 15660206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.