These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11541517)

  • 1. An initiation-promotion model of tumour prevalence from high-charge and energy radiations.
    Cucinotta FA; Wilson JW
    Phys Med Biol; 1994 Nov; 39(11):1811-31. PubMed ID: 11541517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation-promotion model of tumor prevalence in mice from space radiation exposures.
    Cucinotta FA; Wilson JW
    Radiat Environ Biophys; 1995 Aug; 34(3):145-9. PubMed ID: 7480628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluence-related risk coefficients using the Harderian gland data as an example.
    Curtis SB; Townsend LW; Wilson JW; Powers-Risius P; Alpen EL; Fry RJ
    Adv Space Res; 1992; 12(2-3):407-16. PubMed ID: 11537038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluence-based relative biological effectiveness for charged particle carcinogenesis in mouse Harderian gland.
    Alpen EL; Powers-Risius P; Curtis SB; DeGuzman R; Fry RJ
    Adv Space Res; 1994 Oct; 14(10):573-81. PubMed ID: 11539994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating galactic cosmic ray effects: Synergy modeling of murine tumor prevalence after exposure to two one-ion beams in rapid sequence.
    Huang EG; Wang RY; Xie L; Chang P; Yao G; Zhang B; Ham DW; Lin Y; Blakely EA; Sachs RK
    Life Sci Space Res (Amst); 2020 May; 25():107-118. PubMed ID: 32414484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting cancer rates in astronauts from animal carcinogenesis studies and cellular markers.
    Williams JR; Zhang Y; Zhou H; Osman M; Cha D; Kavet R; Cuccinotta F; Dicello JF; Dillehay LE
    Mutat Res; 1999 Dec; 430(2):255-69. PubMed ID: 10631340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose protraction studies with low- and high-LET radiations on neoplastic cell transformation in vitro.
    Yang TC-H ; Craise LM; Mei M-T ; Tobias CA
    Adv Space Res; 1986; 6(11):137-47. PubMed ID: 11537213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-LET radiation carcinogenesis.
    Fry RJ; Powers-Risius P; Alpen EL; Ainsworth EJ; Ullrich RL
    Adv Space Res; 1983; 3(8):241-8. PubMed ID: 11542751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized shielding for space radiation protection.
    Wilson JW; Cucinotta FA; Kim MH; Schimmerling W
    Phys Med; 2001; 17 Suppl 1():67-71. PubMed ID: 11770540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation induction in human lymphoid cells by energetic heavy ions.
    Kronenberg A
    Adv Space Res; 1994; 14(10):339-46. PubMed ID: 11538026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-track effects and new directions in GCR risk assessment.
    Curtis SB
    Adv Space Res; 1994; 14(10):885-94. PubMed ID: 11538039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Proton and Combined Proton and (56)Fe Radiation on the Hippocampus.
    Raber J; Allen AR; Sharma S; Allen B; Rosi S; Olsen RH; Davis MJ; Eiwaz M; Fike JR; Nelson GA
    Radiat Res; 2016 Jan; 185(1):20-30. PubMed ID: 26720797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis.
    Wang X; Farris Iii AB; Wang P; Zhang X; Wang H; Wang Y
    Radiat Res; 2015 Feb; 183(2):233-9. PubMed ID: 25635344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions.
    Medvedovsky C; Worgul BV; Huang Y; Brenner DJ; Tao F; Miller J; Zeitlin C; Ainsworth EJ
    Adv Space Res; 1994; 14(10):475-82. PubMed ID: 11538029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing Nonlinearity in Harderian Gland Tumor Induction Using Three Combined HZE-irradiated Mouse Datasets.
    Chappell LJ; Elgart SR; Milder CM; Semones EJ
    Radiat Res; 2020 Jul; 194(1):38-51. PubMed ID: 32330076
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose rate and repair effects on cell damage in Earth orbit.
    Cucinotta FA; Wilson JW; Shinn JL; Atwell W; Fong M
    Adv Space Res; 1994; 14(10):121-4. PubMed ID: 11538025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo mammary tumourigenesis in the Sprague-Dawley rat and microdosimetric correlates.
    Dicello JF; Christian A; Cucinotta FA; Gridley DS; Kathirithamby R; Mann J; Markham AR; Moyers MF; Novak GR; Piantadosi S; Ricart-Arbona R; Simonson DM; Strandberg JD; Vazquez M; Williams JR; Zhang Y; Zhou H; Huso D
    Phys Med Biol; 2004 Aug; 49(16):3817-30. PubMed ID: 15446807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RBE of radiations in space and the implications for space travel.
    Edwards AA
    Phys Med; 2001; 17 Suppl 1():147-52. PubMed ID: 11771542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolving microlesion concept.
    Todd P
    Adv Space Res; 1986; 6(11):187-9. PubMed ID: 11537219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumorigenic potential of high-Z, high-LET charged-particle radiations.
    Alpen EL; Powers-Risius P; Curtis SB; DeGuzman R
    Radiat Res; 1993 Dec; 136(3):382-91. PubMed ID: 8278580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.