BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11541566)

  • 1. Characterizing photosynthesis and transpiration of plant communities in controlled environments.
    Monje O; Bugbee B
    Acta Hortic; 1996 Dec; 440():123-8. PubMed ID: 11541566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canopy photosynthesis and transpiration in microgravity: gas exchange measurements aboard Mir.
    Monje O; Bingham GE; Carman JG; Campbell WF; Salisbury FB; Eames BK; Sytchev V; Levinskikh MA; Podolsky I
    Adv Space Res; 2000; 26(2):303-6. PubMed ID: 11543166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas exchange characteristics of wheat stands grown in a closed, controlled environment.
    Wheeler RM; Corey KA; Sager JC; Knott WM
    Crop Sci; 1993; 33(1):161-8. PubMed ID: 11538198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency.
    Monje O; Bugbee B
    Plant Cell Environ; 1998; 21():315-24. PubMed ID: 11543216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling gas exchange in a closed plant growth chamber.
    Cornett JD; Hendrix JE; Wheeler RM; Ross CW; Sadeh WZ
    Adv Space Res; 1994 Nov; 14(11):337-41. PubMed ID: 11540203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Canopy Gas Exchange Using CAnopy Photosynthesis and Transpiration Systems (CAPTS).
    Song Q; Zhu XG
    Methods Mol Biol; 2024; 2790():213-226. PubMed ID: 38649573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?
    Wheeler RM; Mackowiak CL; Yorio NC; Sager JC
    Ann Bot; 1999 Mar; 83(3):243-51. PubMed ID: 11541549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
    Locke AM; Sack L; Bernacchi CJ; Ort DR
    Ann Bot; 2013 Sep; 112(5):911-8. PubMed ID: 23864003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water relations, gas exchange, and nutrient response to a long term constant water deficit.
    Berry WL; Goldstein G; Dreschel TW; Wheeler RM; Sager JC; Knott WM
    Soil Sci; 1992 Jun; 153(6):442-51. PubMed ID: 11538048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study.
    Wheeler RM; Berry WL; Mackowiak C; Corey KA; Sager JC; Heeb MM; Knott WM
    J Plant Nutr; 1993; 16(10):1881-915. PubMed ID: 11538007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO2 crop growth enhancement and toxicity in wheat and rice.
    Bugbee B; Spanarkel B; Johnson S; Monje O; Koerner G
    Adv Space Res; 1994 Nov; 14(11):257-67. PubMed ID: 11540191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Canopy Gas Exchange Using CAnopy Photosynthesis and Transpiration Systems (CAPTS).
    Song Q; Zhu XG
    Methods Mol Biol; 2018; 1770():69-81. PubMed ID: 29978396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration.
    Monje O; Stutte G; Chapman D
    Planta; 2005 Oct; 222(2):336-45. PubMed ID: 15968511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of crop gas exchange and transpiration data obtained with CEEF to global change problem.
    Tako Y; Arai R; Otsubo K; Nitta K
    Adv Space Res; 2001; 27(9):1541-5. PubMed ID: 11695434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen balance for wheat canopies (Triticum aestivum cv. Veery 10) grown under elevated and ambient CO2 concentrations.
    Smart DR; Ritchie K; Bloom AJ; Bugbee BB
    Plant Cell Environ; 1998; 21():753-63. PubMed ID: 11543217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.
    Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions.
    Resco de Dios V; Gessler A; Ferrio JP; Alday JG; Bahn M; Del Castillo J; Devidal S; García-Muñoz S; Kayler Z; Landais D; Martín-Gómez P; Milcu A; Piel C; Pirhofer-Walzl K; Ravel O; Salekin S; Tissue DT; Tjoelker MG; Voltas J; Roy J
    Gigascience; 2016 Oct; 5(1):43. PubMed ID: 27765071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.
    Tausz-Posch S; Norton RM; Seneweera S; Fitzgerald GJ; Tausz M
    Physiol Plant; 2013 Jun; 148(2):232-45. PubMed ID: 23035842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Diurnal variation of winter wheat water and heat fluxes of a simulation with photosynthesis-evapotranspiration coupled model].
    Wang J; Yu Q; Li X; Sun X
    Ying Yong Sheng Tai Xue Bao; 2004 Nov; 15(11):2077-82. PubMed ID: 15707316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.