BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 11541662)

  • 1. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems.
    McCollom TM; Shock EL
    Geochim Cosmochim Acta; 1997 Oct; 61(20):4375-91. PubMed ID: 11541662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems.
    Shock EL; McCollom T; Schulte MD
    Orig Life Evol Biosph; 1995 Jun; 25(1-3):141-59. PubMed ID: 11536667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.
    McCollom TM
    Astrobiology; 2007 Dec; 7(6):933-50. PubMed ID: 18163871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Culture-dependent and -independent characterization of microbial communities associated with a shallow submarine hydrothermal system occurring within a coral reef off Taketomi Island, Japan.
    Hirayama H; Sunamura M; Takai K; Nunoura T; Noguchi T; Oida H; Furushima Y; Yamamoto H; Oomori T; Horikoshi K
    Appl Environ Microbiol; 2007 Dec; 73(23):7642-56. PubMed ID: 17921273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenomic dating--the relative antiquity of archaeal metabolic and physiological traits.
    Blank CE
    Astrobiology; 2009 Mar; 9(2):193-219. PubMed ID: 19371161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of shallow-water hydrothermal venting on biological communities of coastal marine ecosystems of the western Pacific.
    Tarasov VG
    Adv Mar Biol; 2006; 50():267-421. PubMed ID: 16782453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece.
    Gilhooly WP; Fike DA; Druschel GK; Kafantaris FC; Price RE; Amend JP
    Geochem Trans; 2014; 15():12. PubMed ID: 25183951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.
    Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R
    Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.
    Perner M; Hansen M; Seifert R; Strauss H; Koschinsky A; Petersen S
    Geobiology; 2013 Jul; 11(4):340-55. PubMed ID: 23647923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiotic redox reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface biosphere.
    McDermott JM; Sylva SP; Ono S; German CR; Seewald JS
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20453-20461. PubMed ID: 32817473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal systems as environments for the emergence of life.
    Shock EL
    Ciba Found Symp; 1996; 202():40-52; discussion 52-60. PubMed ID: 9243009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center.
    Anantharaman K; Breier JA; Dick GJ
    ISME J; 2016 Jan; 10(1):225-39. PubMed ID: 26046257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys.
    Hou J; Sievert SM; Wang Y; Seewald JS; Natarajan VP; Wang F; Xiao X
    Microbiome; 2020 Jun; 8(1):102. PubMed ID: 32605604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Sulfate reduction, formation and oxidation of methane in Holocene era sediments of the Vyborg Bay, Baltic Sea].
    Pimenov NV; Kanapatskiĭ TA; Sigalevich PA; Rusanov II; Veslopolova EF; Grigor'ev AG; Zhamoĭda VA
    Mikrobiologiia; 2012; 81(1):84-95. PubMed ID: 22629685
    [No Abstract]   [Full Text] [Related]  

  • 15. High-temperature life without photosynthesis as a model for Mars.
    Shock EL
    J Geophys Res; 1997 Oct; 102(E10):23687-94. PubMed ID: 11541237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction.
    Wankel SD; Adams MM; Johnston DT; Hansel CM; Joye SB; Girguis PR
    Environ Microbiol; 2012 Oct; 14(10):2726-40. PubMed ID: 22827909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organic sulfur metabolisms in hydrothermal environments.
    Rogers KL; Schulte MD
    Geobiology; 2012 Jul; 10(4):320-32. PubMed ID: 22469147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents.
    Meier DV; Pjevac P; Bach W; Hourdez S; Girguis PR; Vidoudez C; Amann R; Meyerdierks A
    ISME J; 2017 Jul; 11(7):1545-1558. PubMed ID: 28375213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental and theoretical approach to determining linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys.
    Houghton JL; Seyfried WE
    Geobiology; 2010 Dec; 8(5):457-70. PubMed ID: 20726900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Anaerobic methane oxidation and sulfate reduction in bacterial mats of coral-like carbonate structures in the Black Sea].
    Pimenov NV; Ivanova AE
    Mikrobiologiia; 2005; 74(3):420-9. PubMed ID: 16119857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.