These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11541712)

  • 1. Biological studies of Martian soil analogues.
    Imshenetsky AA; Murzakov BG; Evdokimova MD; Dorofeyeva IK
    Adv Space Res; 1981; 1(14):21-6. PubMed ID: 11541712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of microorganisms to a simulated Martian environment.
    Hawrylewicz EJ; Hagen CA; Ehrlich R
    Life Sci Space Res; 1965; 3():64-73. PubMed ID: 12035808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival of microorganisms in smectite clays: implications for Martian exobiology.
    Moll DM; Vestal JR
    Icarus; 1992 Aug; 98(2):233-9. PubMed ID: 11539360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological contamination of Mars. I. Survival of terrestrial microorganisms in simulated Martian environments.
    Scher S; Packer E; Sagan C
    Life Sci Space Res; 1964; 2():352-6. PubMed ID: 11883443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ microbial detection in Mojave Desert soil using native fluorescence.
    Smith HD; Duncan AG; Neary PL; Lloyd CR; Anderson AJ; Sims RC; McKay CP
    Astrobiology; 2012 Mar; 12(3):247-57. PubMed ID: 22352702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of hydrogen peroxide and hydrated ferric oxides on the metabolism of soil microflora].
    Imshenetskiĭ AA; Murzakov BG; Evdokimova MD; Dorofeeva IK
    Mikrobiologiia; 1979; 48(5):919-26. PubMed ID: 502913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constraints on the Metabolic Activity of Microorganisms in Atacama Surface Soils Inferred from Refractory Biomarkers: Implications for Martian Habitability and Biomarker Detection.
    Wilhelm MB; Davila AF; Parenteau MN; Jahnke LL; Abate M; Cooper G; Kelly ET; Parro García V; Villadangos MG; Blanco Y; Glass B; Wray JJ; Eigenbrode JL; Summons RE; Warren-Rhodes K
    Astrobiology; 2018 Jul; 18(7):955-966. PubMed ID: 30035640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival of Bacillus subtilis endospores on ultraviolet-irradiated rover wheels and Mars regolith under simulated Martian conditions.
    Kerney KR; Schuerger AC
    Astrobiology; 2011 Jun; 11(5):477-85. PubMed ID: 21707388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxides and the survivability of microorganisms on the surface of Mars.
    Mancinelli RL
    Adv Space Res; 1989; 9(6):191-5. PubMed ID: 11537371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplication of certain soil micro-organisms under simulated Martian conditions.
    Imshenetsky AA; Kusjurina LA; Jakshina VM
    Life Sci Space Res; 1970; 8():59-61. PubMed ID: 12664919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antarctica as a Martian model.
    Vishniac WV; Mainzer SE
    Life Sci Space Res; 1973; 11():25-31. PubMed ID: 11998858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The possibility of life in outer space.
    Imshenetsky AA; Abyzov SS; Voronov GT; Zhukova AI; Lysenko SV
    Life Sci Space Res; 1966; 4():121-30. PubMed ID: 11915884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Use of a method of concentrating microorganisms in an electric field in the search for life in Mars].
    Imshenetskiĭ AA; Murzakov BG; Dorofeeva IK
    Mikrobiologiia; 1983; 52(1):140-4. PubMed ID: 6843383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SURVIVAL OF MICROORGANISMS IN A SIMULATED MARTIAN ENVIRONMENT. I. BACILLUS SUBTILIS VAR. GLOBIGII.
    HAGEN CA; HAWRYLEWICZ EJ; EHRLICH R
    Appl Microbiol; 1964 May; 12(3):215-8. PubMed ID: 14170958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions.
    Morozova D; Möhlmann D; Wagner D
    Orig Life Evol Biosph; 2007 Apr; 37(2):189-200. PubMed ID: 17160628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen.
    Klingler JM; Mancinelli RL; White MR
    Adv Space Res; 1989; 9(6):173-6. PubMed ID: 11537369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the multiplication of xerophilic micro-organisms under simulated Martian conditions.
    Imshenetsky AA; Kouzyurina LA; Jakshina VM
    Life Sci Space Res; 1973; 11():63-6. PubMed ID: 12523381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S.A.M., the Italian Martian simulation chamber.
    Galletta G; Ferri F; Fanti G; D'Alessandro M; Bertoloni G; Pavarin D; Bettanini C; Cozza P; Pretto P; Bianchini G; Debei S
    Orig Life Evol Biosph; 2006 Dec; 36(5-6):625-7. PubMed ID: 17120119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Gulliver", an experiment for extraterrestrial life detection and analysis.
    Levin GV; Heim AH; Thompson MF; Beem DR; Horowitz NH
    Life Sci Space Res; 1964; 2():124-32. PubMed ID: 11881643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment.
    Levin GV; Straat PA
    Astrobiology; 2016 Oct; 16(10):798-810. PubMed ID: 27626510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.