These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11541792)

  • 1. Voltage transients elicited by brief chilling.
    Pickard BG
    Plant Cell Environ; 1984 Jul; 7(5):679-81. PubMed ID: 11541792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage transients elicited by sudden step-up of auxin.
    Pickard BG
    Plant Cell Environ; 1984; 7():171-8. PubMed ID: 11540796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of calcium in indole-3-acetic acid movement and graviresponse in etiolated pea epicotyls.
    Migliaccio F; Galston AW
    Plant Growth Regul; 1989; 8():335-47. PubMed ID: 11539808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.).
    Dumont E; Bahrman N; Goulas E; Valot B; Sellier H; Hilbert JL; Vuylsteker C; Lejeune-Hénaut I; Delbreil B
    Plant Sci; 2011 Jan; 180(1):86-98. PubMed ID: 21421351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls.
    Migliaccio F; Galston AW
    Plant Physiol; 1987; 85(2):542-7. PubMed ID: 11539707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling.
    Moore CA; Bowen HC; Scrase-Field S; Knight MR; White PJ
    Plant J; 2002 May; 30(4):457-65. PubMed ID: 12028575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.).
    Grimaud F; Renaut J; Dumont E; Sergeant K; Lucau-Danila A; Blervacq AS; Sellier H; Bahrman N; Lejeune-Hénaut I; Delbreil B; Goulas E
    J Proteomics; 2013 Mar; 80():145-59. PubMed ID: 23318888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth inhibition, turgor maintenance, and changes in yield threshold after cessation of solute import in pea epicotyls.
    Schmalstig JG; Cosgrove DJ
    Plant Physiol; 1988; 88(4):1240-5. PubMed ID: 11537436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long- and short-term chilling stress and post-stress recovery.
    Badowiec A; Swigonska S; Weidner S
    Plant Physiol Biochem; 2013 Oct; 71():315-24. PubMed ID: 24012770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraviolet-B radiation causes tendril coiling in Pisum sativum.
    Brosché M; Strid A
    Plant Cell Physiol; 2000 Sep; 41(9):1077-9. PubMed ID: 11100781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth.
    Balla J; Kalousek P; Reinöhl V; Friml J; Procházka S
    Plant J; 2011 Feb; 65(4):571-7. PubMed ID: 21219506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Graviresponse in higher plants and its regulation in molecular bases: relevance to growth and development, and auxin polar transport in etiolated pea seedlings].
    Ueda J; Miyamoto K
    Biol Sci Space; 2003 Aug; 17(2):116-25. PubMed ID: 14555809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polar auxin transport is essential to maintain growth and development of etiolated pea and maize seedlings grown under 1 g conditions: Relevance to the international space station experiment.
    Miyamoto K; Inui A; Uheda E; Oka M; Kamada M; Yamazaki C; Shimazu T; Kasahara H; Sano H; Suzuki T; Higashibata A; Ueda J
    Life Sci Space Res (Amst); 2019 Feb; 20():1-11. PubMed ID: 30797426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem?
    Renton M; Hanan J; Ferguson BJ; Beveridge CA
    New Phytol; 2012 May; 194(3):704-715. PubMed ID: 22443265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen deficiency hinders etioplast development in stems of dark-grown pea (Pisum sativum) shoot cultures.
    Kósa A; Preininger É; Böddi B
    Physiol Plant; 2015 Nov; 155(3):330-7. PubMed ID: 25825156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.
    Janczewski AM; Lakatta EG
    J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graviresponse and its regulation from the aspect of molecular levels in higher plants: growth and development, and auxin polar transport in etiolated pea seedlings under microgravity.
    Miyamoto K; Hoshino T; Hitotsubashi R; Tanimoto E; Ueda J
    Biol Sci Space; 2003 Oct; 17(3):234-5. PubMed ID: 14676393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of solute transport and cell expansion in pea stems.
    Schmalstig JG; Cosgrove DJ
    Plant Physiol; 1990; 94(4):1625-33. PubMed ID: 11537472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques.
    Cosgrove DJ
    Planta; 1987; 171():266-78. PubMed ID: 11539726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The epidermis of the pea epicotyl is not a unique target tissue for auxin-induced growth.
    Rayle DL; Nowbar S; Cleland RE
    Plant Physiol; 1991; 97(1):449-51. PubMed ID: 11538376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.