These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11541831)

  • 1. Deviations from uniform power law scaling in nonstationary time series.
    Viswanathan GM; Peng CK; Stanley HE; Goldberger AL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1997 Jan; 55(1):845-9. PubMed ID: 11541831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series.
    Peng CK; Havlin S; Stanley HE; Goldberger AL
    Chaos; 1995; 5(1):82-7. PubMed ID: 11538314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of heart rate variability via detrended fluctuation analysis and alphabeta filter.
    Echeverría JC; Woolfson MS; Crowe JA; Hayes-Gill BR; Croaker GD; Vyas H
    Chaos; 2003 Jun; 13(2):467-75. PubMed ID: 12777109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractal fluctuations in cardiac time series.
    West BJ; Zhang R; Sanders AW; Miniyar S; Zuckerman JH; Levine BD
    Physica A; 1999 Aug; 270(3-4):552-66. PubMed ID: 11542384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical physics and physiology: monofractal and multifractal approaches.
    Stanley HE; Amaral LA; Goldberger AL; Havlin S; Ivanov PCh ; Peng CK
    Physica A; 1999 Aug; 270(1-2):309-24. PubMed ID: 11543220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-range anticorrelations and non-Gaussian behavior of the heartbeat.
    Peng C-K ; Mietus J; Hausdorff JM; Havlin S; Stanley HE; Goldberger AL
    Phys Rev Lett; 1993 Mar; 70(9):1343-6. PubMed ID: 10054352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of heart rate variability by discrete nonstationary non-Markov stochastic processes.
    Yulmetyev R; Hänggi P; Gafarov F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046107. PubMed ID: 12005926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis.
    Ivanov PC; Rosenblum MG; Peng CK; Mietus J; Havlin S; Stanley HE; Goldberger AL
    Nature; 1996 Sep; 383(6598):323-7. PubMed ID: 8848043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heuristic segmentation of a nonstationary time series.
    Fukuda K; Eugene Stanley H; Nunes Amaral LA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021108. PubMed ID: 14995428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the heart preadapted to hypoxia? Evidence from fractal dynamics of heartbeat interval fluctuations at high altitude (5,050 m).
    Meyer M; Rahmel A; Marconi C; Grassi B; Skinner JE; Cerretelli P
    Integr Physiol Behav Sci; 1998; 33(1):9-40. PubMed ID: 9594353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease.
    Peng CK; Havlin S; Hausdorff JM; Mietus JE; Stanley HE; Goldberger AL
    J Electrocardiol; 1995; 28 Suppl():59-65. PubMed ID: 8656130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of statistical physics to heartbeat diagnosis.
    Havlin S; Amaral LA; Ashkenazy Y; Goldberger AL; Ivanov PCh ; Peng CK; Stanley HE
    Physica A; 1999 Dec; 274(1-2):99-110. PubMed ID: 11543157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling differences of heartbeat excursions between wake and sleep periods.
    Guzmán-Vargas L; Reyes-Ramírez I; Hernández-Pérez R; Angulo-Brown F
    Methods Enzymol; 2011; 487():409-29. PubMed ID: 21187233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of extreme data loss on long-range correlated and anticorrelated signals quantified by detrended fluctuation analysis.
    Ma QD; Bartsch RP; Bernaola-Galván P; Yoneyama M; Ivanov PCh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031101. PubMed ID: 20365691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac interbeat interval dynamics from childhood to senescence : comparison of conventional and new measures based on fractals and chaos theory.
    Pikkujämsä SM; Mäkikallio TH; Sourander LB; Räihä IJ; Puukka P; Skyttä J; Peng CK; Goldberger AL; Huikuri HV
    Circulation; 1999 Jul; 100(4):393-9. PubMed ID: 10421600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scale-independent measures and pathologic cardiac dynamics.
    Nunes Amaral LA; Goldberger AL; Ivanov PCh ; Stanley HE
    Phys Rev Lett; 1998 Sep; 81(11):2388-91. PubMed ID: 11542722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnitude and sign correlations in heartbeat fluctuations.
    Ashkenazy Y; Ivanov PC; Havlin S; Peng CK; Goldberger AL; Stanley HE
    Phys Rev Lett; 2001 Feb; 86(9):1900-3. PubMed ID: 11290277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic feedback and the regulation of biological rhythms.
    Ivanov PCh ; Nunes Amaral LA; Goldberger AL; Stanley HE
    Europhys Lett; 1998 Aug; 43(4):363-8. PubMed ID: 11542723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between detrended fluctuation analysis and spectral analysis of heart-rate variability.
    Willson K; Francis DP; Wensel R; Coats AJ; Parker KH
    Physiol Meas; 2002 May; 23(2):385-401. PubMed ID: 12051310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic heart-rate model can reveal pathologic cardiac dynamics.
    Kuusela T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031916. PubMed ID: 15089331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.