BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11541843)

  • 1. Microgravity generated by space flight has little effect on the growth and development of chick embryonic bone.
    Kawashima K; Yamaguchi A; Shinki T; Noji S; Yokose S; Yamaai T; Endo H; Yoshiki S; Abe E; Suda T
    Biol Sci Space; 1995 Jun; 9(2):82-94. PubMed ID: 11541843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lessons from the space experiment SL-J/FMPT/L7: the effect of microgravity on chicken embryogenesis and bone formation.
    Suda T
    Bone; 1998 May; 22(5 Suppl):73S-78S. PubMed ID: 9600757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium utilization by quail embryos during activities preceding space flight and during embryogenesis in microgravity aboard the orbital space station MIR.
    Orban JI; Piert SJ; Guryeva TS; Hester PY
    J Gravit Physiol; 1999 Oct; 6(2):33-41. PubMed ID: 11543084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dynamics of calcium utilization for skeleton formation in Japanese quail embryos under the microgravity condition].
    Komissarova DV; Gur'eva TS; Sychev VN
    Aviakosm Ekolog Med; 2011; 45(5):52-3. PubMed ID: 22312863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular response of bone to growth hormone during skeletal unloading: regional differences.
    Bikle DD; Harris J; Halloran BP; Currier PA; Tanner S; Morey-Holton E
    Endocrinology; 1995 May; 136(5):2099-109. PubMed ID: 7720659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight.
    Morey-Holton ER; Globus RK
    Bone; 1998 May; 22(5 Suppl):83S-88S. PubMed ID: 9600759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cosmos 1887: morphology, histochemistry, and vasculature of the growing rat tibia.
    Doty SB; Morey-Holton ER; Durnova GN; Kaplansky AS
    FASEB J; 1990 Jan; 4(1):16-23. PubMed ID: 2153083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspective on the impact of weightlessness on calcium and bone metabolism.
    Holick MF
    Bone; 1998 May; 22(5 Suppl):105S-111S. PubMed ID: 9600764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-related bone mineral redistribution and lack of bone mass recovery after reambulation in young rats.
    Lafage-Proust MH; Collet P; Dubost JM; Laroche N; Alexandre C; Vico L
    Am J Physiol; 1998 Feb; 274(2):R324-34. PubMed ID: 9486288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Early bone and cartilage histogenesis in embryonic Japanese quails in the conditions of microgravity].
    Komissarova DV; Gur'eva TS; Dadasheva OA; Sychev VN
    Aviakosm Ekolog Med; 2012; 46(5):64-7. PubMed ID: 23405424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of weightlessness on phosphorus and calcium metabolism and bone remodeling].
    Alexandre C; Chappard D; Vico L; Minaire P; Riffat G
    Presse Med; 1986 May; 15(20):923-7. PubMed ID: 2940573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of simulated weightlessness on bone mineral metabolism.
    Globus RK; Bikle DD; Morey-Holton E
    Endocrinology; 1984 Jun; 114(6):2264-70. PubMed ID: 6723581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station.
    Smith SM; Wastney ME; O'Brien KO; Morukov BV; Larina IM; Abrams SA; Davis-Street JE; Oganov V; Shackelford LC
    J Bone Miner Res; 2005 Feb; 20(2):208-18. PubMed ID: 15647814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of weightlessness on osseous tissue of the rat after a space flight of 5 days (Cosmos 1514)].
    Vico L; Chappard D; Alexandre C; Palle S; Minaire P; Riffat G; Novikov VE; Bakulin AV
    J Physiol (Paris); 1987; 82(1):1-11. PubMed ID: 3430362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of microgravity on collagenase deproteinization and EDTA decalcification of bone fragments.
    Simske SJ; Luttges MW
    Microgravity Sci Technol; 1994 Sep; 7(3):266-9. PubMed ID: 11541486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone and body mass changes during space flight.
    Schneider V; Oganov V; LeBlanc A; Rakmonov A; Taggart L; Bakulin A; Huntoon C; Grigoriev A; Varonin L
    Acta Astronaut; 1995; 36(8-12):463-6. PubMed ID: 11540977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of microgravity on osteoblast growth.
    Hughes-Fulford M; Tjandrawinata R; Fitzgerald J; Gasuad K; Gilbertson V
    Gravit Space Biol Bull; 1998 May; 11(2):51-60. PubMed ID: 11540639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Histogenesis of Japanese quail bone and cartilage tissues at the final stages of embryonic development in microgravity].
    Komissarova DV; Dadasheva OA; Gurieva TS; Sychev VN
    Aviakosm Ekolog Med; 2013; 47(6):24-8. PubMed ID: 24660239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone markers during a 6-month space flight: effects of vitamin K supplementation.
    Vermeer C; Wolf J; Craciun AM; Knapen MH
    J Gravit Physiol; 1998 Oct; 5(2):65-9. PubMed ID: 11541904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biochemical and morphological investigation of alkaline phosphatase and Ca+2-ATPase during initial mineralization in chick embryonic tibia.
    Sandhu HS; Jande SS
    J Exp Zool; 1982 Jul; 221(3):395-8. PubMed ID: 6213737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.