BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11541893)

  • 1. The senescence of oat leaf segments is promoted under simulated microgravity condition on a three-dimensional clinostat.
    Miyamoto K; Oka M; Ueda J; Hoson T; Kamisaka S
    Biol Sci Space; 1995 Dec; 9(4):327-30. PubMed ID: 11541893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones.
    Miyamoto K; Yuda T; Shimazu T; Ueda J
    Adv Space Res; 2001; 27(5):1017-22. PubMed ID: 11596632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of various gravistimuli on senescence of oat leaf segments].
    Miyamoto K; Sato K; Shimazu T; Ueda J
    Biol Sci Space; 1999 Sep; 13(3):274-5. PubMed ID: 12533019
    [No Abstract]   [Full Text] [Related]  

  • 4. Growth and development, and auxin polar transport of transgenic Arabidopsis under simulated microgravity conditions on a three-dimensional clinostat.
    Shimazu T; Miyamoto K; Ueda J
    Biol Sci Space; 2003 Dec; 17(4):288-92. PubMed ID: 15136750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of simulated microgravity on auxin polar transport in inflorescence axis of Arabidopsis thaliana.
    Oka M; Ueda J; Miyamoto K; Yamamoto R; Hoson T; Kamisaka S
    Biol Sci Space; 1995 Dec; 9(4):331-6. PubMed ID: 11541894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Senescence-promoting effect of arabidopside A.
    Hisamatsu Y; Goto N; Hasegawa K; Shigemori H
    Z Naturforsch C J Biosci; 2006; 61(5-6):363-6. PubMed ID: 16869494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and photosynthesis of Japanese flowering cherry under simulated microgravity conditions.
    Sugano M; Ino Y; Nakamura T
    Biol Sci Space; 2002 Dec; 16(4):242-4. PubMed ID: 12721527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation.
    Rossato L; MacDuff JH; Laine P; Le Deunff E; Ourry A
    J Exp Bot; 2002 May; 53(371):1131-41. PubMed ID: 11971924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of Prunus tree stems under simulated microgravity conditions.
    Nakamura T; Sassa N; Kuroiwa E; Negishi Y; Hashimoto A; Yamashita M; Yamada M
    Adv Space Res; 1999; 23(12):2017-20. PubMed ID: 11710384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vegetative growth of higher plants on a three-dimensional clinostat.
    Hoson T; Kamisaka S; Miyamoto K; Ueda J; Yamashita M; Masuda Y
    Microgravity Sci Technol; 1993 Dec; 6(4):278-81. PubMed ID: 11541849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of simulated low-gravity environments on growth, development and metabolism of plants.
    Dedolph RR
    Life Sci Space Res; 1967; 5():217-28. PubMed ID: 11973847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin polar transport in Arabidopsis under simulated microgravity conditions--relevance to growth and development.
    Miyamoto K; Oka M; Yamamoto R; Masuda Y; Hoson T; Kamisaka S; Ueda J
    Adv Space Res; 1999; 23(12):2033-6. PubMed ID: 11710387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant growth processes in Arabidopsis under microgravity conditions simulated by a clinostat.
    Ishii Y; Hoson T; Kamisaka S; Miyamoto K; Ueda J; Mantani S; Fujii S; Masuda Y; Yamamoto R
    Biol Sci Space; 1996 Mar; 10(1):3-7. PubMed ID: 11540339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat.
    Shimazu T; Yuda T; Miyamoto K; Yamashita M; Ueda J
    Adv Space Res; 2001; 27(5):995-1000. PubMed ID: 11596646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automorphosis of higher plants on a 3-D clinostat.
    Hoson T; Kamisaka S; Yamashita M; Masuda Y
    Adv Space Res; 1998; 21(8-9):1229-38. PubMed ID: 11541377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and non-invasive detection of plants senescence using a delayed fluorescence technique.
    Zhang L; Xing D; Wang J; Li L
    Photochem Photobiol Sci; 2007 Jun; 6(6):635-41. PubMed ID: 17549265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal transduction in leaf senescence.
    Zhang H; Zhou C
    Plant Mol Biol; 2013 Aug; 82(6):539-45. PubMed ID: 23096425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and development in Arabidopsis thaliana through an entire life cycle under simulated microgravity conditions on a clinostat.
    Miyamoto K; Yamamoto R; Fujii S; Soga K; Hoson T; Shimazu T; Masuda Y; Kamisaka S; Ueda J
    J Plant Res; 1999 Dec; 112(1108):413-8. PubMed ID: 11543174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutation of Oryza sativa CORONATINE INSENSITIVE 1b (OsCOI1b) delays leaf senescence.
    Lee SH; Sakuraba Y; Lee T; Kim KW; An G; Lee HY; Paek NC
    J Integr Plant Biol; 2015 Jun; 57(6):562-76. PubMed ID: 25146897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of leaf senescence and gene expression/activities of chlorophyll degradation enzymes in harvested Chinese flowering cabbage (Brassica rapa var. parachinensis).
    Zhang X; Zhang Z; Li J; Wu L; Guo J; Ouyang L; Xia Y; Huang X; Pang X
    J Plant Physiol; 2011 Nov; 168(17):2081-7. PubMed ID: 21820757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.