BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 11541922)

  • 1. Does the centre of mass remain stable during complex human postural equilibrium tasks in weightlessness?
    Stapley P; Pozzo T
    Acta Astronaut; 1998; 43(3-6):163-79. PubMed ID: 11541922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of weightlessness on posture and movement control during a whole body reaching task.
    Pozzo T; Berthoz A; Popov C
    Acta Astronaut; 1995; 36(8-12):727-32. PubMed ID: 11541009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating centre of mass stabilisation as the goal of posture and movement coordination during human whole body reaching.
    Stapley P; Pozzo T; Grishin A; Papaxanthis C
    Biol Cybern; 2000 Feb; 82(2):161-72. PubMed ID: 10664103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Baroni G; Pedotti A; Massion J; Ferrigno G
    J Biomech; 2005 Apr; 38(4):769-77. PubMed ID: 15713298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation of center of mass control under microgravity in a whole-body lifting task.
    Kingma I; Toussaint HM; Commissaris DA; Savelsbergh GJ
    Exp Brain Res; 1999 Mar; 125(1):35-42. PubMed ID: 10100974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse dynamic investigation of voluntary trunk movements in weightlessness: a new microgravity-specific strategy.
    Pedrocchi A; Pedotti A; Baroni G; Massion J; Ferrigno G
    J Biomech; 2003 Nov; 36(11):1691-700. PubMed ID: 14522211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor coordination in weightless conditions revealed by long-term microgravity adaptation.
    Baroni G; Pedrocchi A; Ferrigno G; Massion J; Pedotti A
    Acta Astronaut; 2001; 49(3-10):199-213. PubMed ID: 11669110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voluntary head stabilisation in space during oscillatory trunk movements in the frontal plane performed before, during and after a prolonged period of weightlessness.
    Amblard B; Assaiante C; Vaugoyeau M; Baroni G; Ferrigno G; Pedotti A
    Exp Brain Res; 2001 Mar; 137(2):170-9. PubMed ID: 11315545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of graviceptives cues at different level of visual information processing: the effect of prolonged weightlessness.
    Leone G; Lipshits M; Gurfinkel V; Berthoz A
    Acta Astronaut; 1995; 36(8-12):743-51. PubMed ID: 11541011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of postural self-regulation in complex spatial environments and after-effects of weightlessness.
    Myasnikov VI; Kozerenko OP; Rudomyotkin NM
    Life Sci Space Res; 1976; 14():313-7. PubMed ID: 12678116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term adaptation of postural control in microgravity.
    Baroni G; Ferrigno G; Rabuffetti M; Pedotti A; Massion J
    Exp Brain Res; 1999 Oct; 128(3):410-6. PubMed ID: 10501814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole body pointing movements in transient microgravity: preliminary results.
    Tagliabue M; Pedrocchi A; Gower V; Ferrigno G; Pozzo T
    J Gravit Physiol; 2004 Jul; 11(2):P39-40. PubMed ID: 16231449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human whole-body reaching in normal gravity and microgravity reveals a strong temporal coordination between postural and focal task components.
    Patron J; Stapley P; Pozzo T
    Exp Brain Res; 2005 Aug; 165(1):84-96. PubMed ID: 15864564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arm end-point trajectories under normal and micro-gravity environments.
    Papaxanthis C; Pozzo T; McIntyre J
    Acta Astronaut; 1998; 43(3-6):153-61. PubMed ID: 11541921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight.
    Newman DJ; Jackson DK; Bloomberg JJ
    Exp Brain Res; 1997 Oct; 117(1):30-42. PubMed ID: 9386002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Support stability influences postural responses to muscle vibration in humans.
    Ivanenko YP; Talis VL; Kazennikov OV
    Eur J Neurosci; 1999 Feb; 11(2):647-54. PubMed ID: 10051765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Velocity of head movements and sensory-motor adaptation during and after short spaceflight.
    Hlavacka F; Kornilova LN
    J Gravit Physiol; 2004 Jul; 11(2):P13-6. PubMed ID: 16231430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of postural control to weightlessness.
    Clément G; Gurfinkel VS; Lestienne F; Lipshits MI; Popov KE
    Exp Brain Res; 1984; 57(1):61-72. PubMed ID: 6519230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A postural model of balance-correcting movement strategies.
    Allum JH; Honegger F
    J Vestib Res; 1992; 2(4):323-47. PubMed ID: 1342406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.